D-ISN/Collaborative Research: Early Warning Systems for Emerging Epidemics of Illicit Substances

D-ISN/合作研究:非法物质新出现流行病的早期预警系统

基本信息

  • 批准号:
    2240409
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

The objective of this Disrupting Operations of Illicit Supply Networks (D-ISN) grant is to develop a data-driven analytical framework to support an Early Warning System (EWS) for emerging illicit substance use crises. The opioid overdose epidemic has evolved in three identified phases, beginning with a rise in presciption opioid abuse, to a rapid increase in heroin overdoses, to synthetic opioids (primarily variants of fentanyl) in combination with heroin, cocaine, and counterfeit pills. Each phase has distinct geospatial and temporal signatures, involving both criminal activity and public health patterns. This project is focused on early identification of new emerging threats, such as the current growing veterinary tranquilizer epidemic, through monitoring and analyzing multimodal data in order to understand underlying causal factors and to develop effective response strategies. This study takes a holistic, multi-disciplinary, system-focused approach to advance the fundamental knowledge of illicit drug use patterns in communities, which can help support effective multi-pronged responses from both the supply and demand sides. The project involves PIs from operations research, criminal justice, and public health policy, in collaboration with several regional agencies tasked with drug trafficking prevention. The project will engage and prepare graduate students to develop new analytical tools to respond to complex societal challenges.This project explores a novel EWS framework with transformative learning and optimization methodologies for identifying and responding to emerging illicit substance threats. The project will collect and build on the use of observational data from a variety of sources to build predictive and prescriptive models. In particular, this project will (1) develop a novel geospatially-aware predictive model to detect emerging threats of illicit drugs and identify high-risk communities by exploiting inherent geospatial connections in the data, (2) learn causal pathways through efficient algorithms to uncover the driving factors of the emerging threats among communities, (3) optimize dynamic intervention strategies that can adapt to emerging data from shifting epidemics, and (4) develop a decision support tool as a proof-of-concept of the proposed EWS framework. The predictive modeling and decision-analytic framework are generalizable to EWS in other application areas. The multidisciplinary team will partner with national and regional drug control programs to demonstrate the practical impact of the proposed data-driven EWS framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔非法供应网络中断业务赠款的目的是开发一个数据驱动的分析框架,以支持针对新出现的非法药物使用危机的预警系统。阿片类药物过量流行分为三个确定的阶段,首先是前期阿片类药物滥用的增加,到海洛因过量的迅速增加,再到合成阿片类药物(主要是芬太尼的变种)与海洛因、可卡因和假药的结合。每个阶段都有不同的地理空间和时间特征,涉及犯罪活动和公共卫生模式。该项目的重点是通过监测和分析多模式数据,及早识别新出现的威胁,如目前日益增长的兽药镇静剂流行,以了解潜在的原因并制定有效的应对战略。这项研究采取全面、多学科、以系统为重点的方法,促进社区非法药物使用模式的基本知识,这有助于支持供需双方有效的多管齐下的应对措施。该项目涉及来自运筹学、刑事司法和公共卫生政策的个人投资,与几个负责预防毒品贩运的区域机构合作。该项目将促使研究生开发新的分析工具,以应对复杂的社会挑战。该项目探索了一个具有变革性学习和优化方法的新的EWS框架,用于识别和应对新出现的非法物质威胁。该项目将收集和利用各种来源的观测数据,以建立预测性和规范性模型。特别是,该项目将(1)开发一种新的地理空间感知预测模型,以通过利用数据中固有的地理空间联系来检测新出现的非法药物威胁并确定高风险社区,(2)通过有效的算法学习因果路径,以揭示社区之间新出现的威胁的驱动因素,(3)优化动态干预战略,以适应不断变化的流行病所产生的新数据,以及(4)开发一个决策支持工具,作为拟议的可持续发展战略框架的概念验证。该预测建模和决策分析框架可推广到其他应用领域的EWS。多学科团队将与国家和地区的药物管制项目合作,展示拟议的数据驱动的EWS框架的实际影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weijun Xie其他文献

Exact and Approximation Algorithms for Sparse Principal Component Analysis
稀疏主成分分析的精确和近似算法
Fabrication of Ni-Cr-FeOsubx/sub ceramic supercapacitor electrodes and devices by one-step electric discharge ablation
通过一步放电烧蚀制备 Ni-Cr-FeOₓ陶瓷超级电容器电极和器件
  • DOI:
    10.1016/j.est.2023.109429
  • 发表时间:
    2023-12-25
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Dawei Liu;Weijun Xie;Zehan Xu;Peiquan Deng;Zhaozhi Wu;Igor Zhitomirsky;Wenxia Wang;Ri Chen;Li Zhou;Yunying Xu;Kaiyuan Shi
  • 通讯作者:
    Kaiyuan Shi
On distributionally robust chance constrained programs with Wasserstein distance
  • DOI:
    10.1007/s10107-019-01445-5
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Weijun Xie
  • 通讯作者:
    Weijun Xie
Transillumination imaging for detection of stress cracks in maize kernels using modified YOLOv8 after pruning and knowledge distillation
修剪和知识蒸馏后使用改进的 YOLOv8 对玉米籽粒中的应力裂纹进行检测的透照成像
  • DOI:
    10.1016/j.compag.2025.109959
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Jingshen Xu;Shuyu Yang;Qing Liang;Zhaohui Zheng;Liuyang Ren;Hanyu Fu;Pei Yang;Weijun Xie;Deyong Yang
  • 通讯作者:
    Deyong Yang
Dynamic Planning of Facility Locations with Benefits from Multitype Facility Colocation
受益于多类型设施托管的设施位置动态规划

Weijun Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weijun Xie', 18)}}的其他基金

Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
  • 批准号:
    2246417
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
  • 批准号:
    2153607
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
  • 批准号:
    2246414
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
  • 批准号:
    2046426
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似海外基金

D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
  • 批准号:
    2240403
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/Collaborative Research: Mitigating the Harm of Fentanyl through Holistic Demand/Supply Interventions and Equitable Resource Allocations
D-ISN/合作研究:通过整体需求/供应干预和公平资源分配减轻芬太尼的危害
  • 批准号:
    2240359
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
  • 批准号:
    2240361
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/Collaborative Research: Mitigating the Harm of Fentanyl through Holistic Demand/Supply Interventions and Equitable Resource Allocations
D-ISN/合作研究:通过整体需求/供应干预和公平资源分配减轻芬太尼的危害
  • 批准号:
    2240360
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
  • 批准号:
    2240402
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/Collaborative Research: Early Warning Systems for Emerging Epidemics of Illicit Substances
D-ISN/合作研究:非法物质新出现流行病的早期预警系统
  • 批准号:
    2240408
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
  • 批准号:
    2240362
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
  • 批准号:
    2240363
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/​Collaborative Research: An Interdisciplinary Approach to the Discovery, Analysis, and Disruption of Wildlife Trafficking Networks
D-ISN/ — 合作研究:发现、分析和破坏野生动物贩运网络的跨学科方法
  • 批准号:
    2146351
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
D-ISN/​Collaborative Research: An Interdisciplinary Approach to the Discovery, Analysis, and Disruption of Wildlife Trafficking Networks
D-ISN/ — 合作研究:发现、分析和破坏野生动物贩运网络的跨学科方法
  • 批准号:
    2146306
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了