CAREER: Empowering White-box Driven Analytics to Detect AI-synthesized Deceptive Content

职业:授权白盒驱动分析来检测人工智能合成的欺骗性内容

基本信息

  • 批准号:
    2146448
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Artificial intelligence (AI) synthesis techniques that automatically produce realistic images, videos, and other content have significantly improved over the past few years. Although there are promising legitimate applications of these techniques, they also raise serious trust and security threats. Cybercriminals increasingly weaponize AI synthesis techniques to deceive users and manipulate opinions without having to invest heavily in manual content generation. For instance, AI-synthesized profile photographs are abused to create fake accounts, while deepfake videos that simulate real people can give cybercriminals the ability to defame or impersonate others. Existing detection work mostly relies on "black-box" approaches that analyze content without considering the way the AI synthesis techniques work. This project's goal is to use "white-box" methods that consider how the techniques work, both to systematically detect AI-synthesized content, and to outline general principles that underlie how broad classes of AI synthesis algorithms work that will help detection algorithms adapt as new synthesis techniques are developed. The results of this research will reinforce user trust in online content and help social media sites and other Internet platforms mitigate deception through AI-synthesized content. The project team will integrate the new datasets and techniques developed in this research into undergraduate and graduate courses as well as online exercises to train future cybersecurity workers. The team will also support diverse participation in the research, actively recruiting and mentoring women and people from other under-represented groups.This research aims to advance AI synthesis detection in terms of efficacy, generalizability, and robustness. The work focuses on detecting AI-synthesized images and videos, as humans are more likely to be attracted to and deceived by visual content. The developed analytics principles are envisioned to inspire new work in these areas and expand to detection of other types of AI-synthesized content. The project is organized around three research thrusts. First, the team will develop a unified analytic framework to systematically dissect AI-synthesis models and gain deep understanding of synthesis patterns common across the models. Second, based on these findings, the team will design generalizable approaches based on the frequency and pixel domains to efficiently detect AI-synthesized images and videos and operate at scale. Third, it will enhance detection robustness by proactively investigating adversarial evasion strategies and prioritizing detection techniques resistant to those strategies. The framework and the developed techniques will be thoroughly evaluated with large-scale real-world data. This research will contribute to establishing a principled detection paradigm and provide insights to prevail over future forms of AI-based deception and propaganda.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。自动生成逼真图像、视频和其他内容的人工智能(AI)合成技术在过去几年中得到了显著改善。尽管这些技术有着很好的合法应用前景,但它们也带来了严重的信任和安全威胁。网络犯罪分子越来越多地将人工智能合成技术武器化,以欺骗用户并操纵意见,而无需在手动内容生成方面投入大量资金。例如,人工智能合成的个人资料照片被滥用来创建虚假帐户,而模拟真实的人的深度伪造视频可以让网络犯罪分子能够诽谤或冒充他人。现有的检测工作主要依赖于“黑盒”方法,这些方法分析内容,而不考虑人工智能合成技术的工作方式。该项目的目标是使用“白盒”方法来考虑这些技术的工作方式,既可以系统地检测人工智能合成的内容,又可以概述人工智能合成算法工作方式的一般原则,这将有助于检测算法适应新的合成技术的发展。这项研究的结果将加强用户对在线内容的信任,并帮助社交媒体网站和其他互联网平台通过人工智能合成的内容减少欺骗。该项目团队将把这项研究中开发的新数据集和技术整合到本科生和研究生课程以及在线练习中,以培训未来的网络安全工作者。该团队还将支持研究的多元化参与,积极招募和指导女性和其他代表性不足的群体。该研究旨在从有效性,普遍性和鲁棒性方面推进AI合成检测。这项工作的重点是检测人工智能合成的图像和视频,因为人类更容易被视觉内容吸引和欺骗。开发的分析原理旨在激发这些领域的新工作,并扩展到检测其他类型的人工智能合成内容。该项目围绕三个研究方向展开。首先,该团队将开发一个统一的分析框架,以系统地剖析人工智能合成模型,并深入了解模型中常见的合成模式。其次,基于这些发现,该团队将设计基于频率和像素域的通用方法,以有效检测人工智能合成的图像和视频并进行大规模操作。第三,它将通过主动调查对抗性规避策略并优先考虑抵抗这些策略的检测技术来增强检测鲁棒性。该框架和开发的技术将与大规模的真实世界的数据进行彻底评估。这项研究将有助于建立一个有原则的检测范式,并提供见解,以战胜未来形式的基于人工智能的欺骗和宣传。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuang Hao其他文献

A Novel Cost-Based Model for Data Repairing
一种新颖的基于成本的数据修复模型
Cannibalism as a feeding strategy for mantis shrimp Oratosquilla oratoria (De Haan, 1844) in the Tianjin coastal zone of Bohai Bay
渤海湾天津沿岸地区螳螂虾 Oratosquilla oratoria (De Haan, 1844) 以同类相食为食的策略
  • DOI:
    10.1101/740100
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi;Yun‐Zhao Lu;Huishan Mi;Yan‐Guang Yu;De;H. You;Shuang Hao
  • 通讯作者:
    Shuang Hao
Fertilization-induced synergid cell death by RALF12-triggered ROS production and ethylene signaling
受精诱导的合点细胞死亡由 RALF12 触发的活性氧产生和乙烯信号传导所致
  • DOI:
    10.1038/s41467-025-58246-y
  • 发表时间:
    2025-03-29
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Junyi Chen;Huan Wang;Jinlin Wang;Xixi Zheng;Wantong Qu;Huijian Fang;Shuang Wang;Le He;Shuang Hao;Thomas Dresselhaus
  • 通讯作者:
    Thomas Dresselhaus
Enhanced electrochemical properties of LiCo0.5Ni0.5O2 by Ti-doping: A first-principle study
通过 Ti 掺杂增强 LiCo0.5Ni0.5O2 的电化学性能:第一原理研究
  • DOI:
    10.1016/j.ceramint.2014.10.034
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Shuang Hao;Naiqin Zhao;Chunsheng Shi;Chunnian He;Jiajun Li;Enzuo Liu
  • 通讯作者:
    Enzuo Liu
An FPGA-based Ultra-High Performance and Scalable Optical Flow Hardware Accelerator for Autonomous Driving
基于 FPGA 的超高性能、可扩展的自动驾驶光流硬件加速器

Shuang Hao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
  • 批准号:
    2339619
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Reel Voices: Empowering Language Learners Through Filmmaking
Reel Voices:通过电影制作赋予语言学习者权力
  • 批准号:
    24K04057
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Quantum Horizons: Empowering Faculty for the Future of Quantum Information
会议:量子视野:为量子信息的未来赋予教师权力
  • 批准号:
    2345607
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Cens-able - Improving and empowering census data research opportunities in Scotland
Cens-able - 改善和增强苏格兰的人口普查数据研究机会
  • 批准号:
    ES/Z502881/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
Empowering impactful development across rural Malawi through clean Energy HUBs
通过清洁能源中心促进马拉维农村地区的有效发展
  • 批准号:
    10086514
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
  • 批准号:
    2336804
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
  • 批准号:
    2336805
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Empowering Wearable Smart Devices with 3D Printed Energy Storage
通过 3D 打印能量存储为可穿戴智能设备提供支持
  • 批准号:
    DP240100892
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Projects
Koala Guardians: Empowering community to protect an Australian icon
考拉守护者:赋权社区保护澳大利亚标志
  • 批准号:
    LP230100317
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了