CAREER: Automatically Taming System Complexity with the Least-Authority Virtual Architecture
职业:使用最小权限虚拟架构自动降低系统复杂性
基本信息
- 批准号:2146537
- 负责人:
- 金额:$ 63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Today's computing systems resemble a modern day Titanic. They are huge, easy to penetrate, and structured without sufficient isolation. Attackers exploit weak outer shells and instantly gain access to the whole system. For example, malware such as SolarWinds or Stuxnet has penetrated deeply into government and corporate systems to leak, control, or corrupt sensitive information such as nuclear control systems, finances, or state secrets. Breaches like this cost billions of dollars per year across the public and private sectors. LAVA addresses this problem by automatically partitioning systems into limited-access compartments and introduces mechanisms to ensure decomposed software elements cannot corrupt each other while efficiently allowing legitimate interactions and discovering attacker behavior. All prototypes will be released as open source artifacts that can be used by non-expert end users. New findings will be incorporated in Rice University security courses. A mini-series of Arduino based lectures and labs will be released with security challenges and taught through the Rice REMSL program as well as homeschool communities to engage elementary aged children.Determining required access and capabilities for users of complex systems is challenging. For example, the Linux kernel has over 200 modules and would require over 40000 unique access control decisions. LAVA (Least-Authority Virtual Architecture) suggests the radical view of an end-to-end compiler and runtime framework for analyzing, optimizing, transforming, and enforcing compartmentalized systems. There are three primary challenges and objectives. First, how to scale to large numbers of objects and users without complete system expertise? LAVA addresses this with a new unified representation and analysis framework that is mapped from source code to target runtime and enforcement mechanisms. Second, how to enhance security with fine-grained compartments without degrading performance? LAVA's novel runtime architecture provides efficient yet secure system isolation using a combination of new mechanisms and portable translation layers to optimize policies. Third, how to monitor attackers that easily cloak themselves inside of black box applications? LAVA extends the enforcement monitor with provenance tracing that is capable of deploying security policies as well as tracking and investigating attacker behavior. The overall outcome is an efficient and powerful in-process monitoring facility that can detect sophisticated cloaked threats in real systems. Programs can go from monitoring a few objects to monitoring the majority. The project will contribute analysis frameworks, compiler extensions, and a security monitor with appropriate abstractions and protection mechanisms to make protection fine-grained and fast.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的计算机系统就像现代的泰坦尼克号。它们巨大,容易渗透,结构没有足够的隔离。攻击者利用脆弱的外壳并立即访问整个系统。例如,SolarWinds或Stuxnet等恶意软件已经深入渗透到政府和企业系统中,以泄漏、控制或破坏敏感信息,如核控制系统、财务或国家机密。像这样的违规行为每年在公共和私营部门造成数十亿美元的损失。LAVA通过自动将系统划分为访问受限的隔间来解决这个问题,并引入了一些机制来确保分解的软件元素不会相互破坏,同时有效地允许合法的交互和发现攻击者的行为。所有原型都将作为开源工件发布,可供非专业最终用户使用。新的研究结果将被纳入赖斯大学的安全课程。一个基于Arduino的小型系列讲座和实验室将发布安全挑战,并通过Rice REMSL计划以及家庭学校社区进行教学,以吸引小学年龄的儿童。确定复杂系统用户所需的访问权限和功能具有挑战性。例如,Linux内核有200多个模块,需要40000多个唯一的访问控制决策。LAVA(Least-Authority Virtual Architecture,最小权限虚拟架构)提出了一种端到端编译器和运行时框架的激进观点,用于分析,优化,转换和执行分区系统。有三个主要挑战和目标。首先,如何在没有完整的系统专业知识的情况下扩展到大量对象和用户?LAVA通过一个新的统一表示和分析框架来解决这个问题,该框架从源代码映射到目标运行时和执行机制。第二,如何在不降低性能的情况下,通过细粒度分隔来增强安全性?LAVA的新颖的运行时架构使用新机制和可移植的翻译层的组合来优化策略,从而提供高效而安全的系统隔离。第三,如何监控那些很容易隐藏在黑盒应用程序中的攻击者?LAVA通过溯源跟踪扩展了执行监视器,能够部署安全策略以及跟踪和调查攻击者行为。总体结果是一个高效和强大的过程中的监测设施,可以检测复杂的隐藏在真实的系统中的威胁。程序可以从监视少数对象到监视大多数对象。该项目将贡献分析框架、编译器扩展和具有适当抽象和保护机制的安全监视器,以实现细粒度和快速的保护。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Dautenhahn其他文献
Whole-Program Privilege and Compartmentalization Analysis with the Object-Encapsulation Model
使用对象封装模型进行全程序权限和分区分析
- DOI:
10.1109/spw59333.2023.00018 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yudi Yang;Weijie Huang;Kelly Kaoudis;Nathan Dautenhahn - 通讯作者:
Nathan Dautenhahn
Deconstructing Xen
解构Xen
- DOI:
10.14722/ndss.2017.23455 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Le Shi;Yuming Wu;Yubin Xia;Nathan Dautenhahn;Haibo Chen;B. Zang;Jinming Li - 通讯作者:
Jinming Li
Nathan Dautenhahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Dautenhahn', 18)}}的其他基金
CNS Core: Small: eXecution Graph Path Security (XGPS)
CNS 核心:小型:执行图路径安全 (XGPS)
- 批准号:
2008867 - 财政年份:2020
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
相似海外基金
An AI-driven clinical washbasin unit that automatically disinfects pathogens, reduces aerosols and decreases healthcare-acquired infections by 70%
%20人工智能驱动%20临床%20洗脸盆%20单位%20%20自动%20消毒%20病原体,%20减少%20气溶胶%20和%20减少%20医疗保健获得性%20感染%20by%2070%
- 批准号:
83001507 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Innovation Loans
This project will leverage artificial neural networks to automatically build various components of particle filters.
该项目将利用人工神经网络自动构建粒子滤波器的各种组件。
- 批准号:
2841890 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
- 批准号:
2403747 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
The DOVE Device to Prevent Opioid Overdose Deaths: An Armband That Senses Overdose and Automatically Injects Naloxone
防止阿片类药物过量死亡的 DOVE 装置:可感应过量并自动注射纳洛酮的臂带
- 批准号:
10485568 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Innovative software for the mining industry that automatically designs optimally shaped slopes in any lithology within a suitably short runtime
适用于采矿业的创新软件,可在适当短的运行时间内自动设计任何岩性的最佳形状斜坡
- 批准号:
10078412 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Collaborative R&D
PatentPulseAI: feasibility study of an AI-based solution to automatically assess the value of a given patent and continuously check for infringement.
PatentPulseAI:基于人工智能的解决方案的可行性研究,可自动评估给定专利的价值并持续检查侵权情况。
- 批准号:
10079851 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Collaborative R&D
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
- 批准号:
10834339 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Detection and Analysis of Automatically Generated Text according to the Applications
根据应用自动生成文本的检测和分析
- 批准号:
23K11767 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of Matched and Unmatched Stimuli on the Maintenance of Treatment Effects for Automatically Maintained Self-Injurious Behavior (AUTO)
匹配和不匹配刺激对自动维持自伤行为(AUTO)治疗效果维持的评估
- 批准号:
10729880 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
ArchAI: Using AI to automatically detect archaeology on EO data
ArchAI:利用人工智能自动检测对地观测数据的考古学
- 批准号:
10047167 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Collaborative R&D