FAI: Fair Representation Learning: Fundamental Trade-Offs and Algorithms

FAI:公平表示学习:基本权衡和算法

基本信息

  • 批准号:
    2147116
  • 负责人:
  • 金额:
    $ 33.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Artificial intelligence based computer systems are increasingly reliant on effective information representation in order to support decision making in domains ranging from image recognition systems to identity control through face recognition. However, systems that rely on traditional statistics and prediction from historical or human-curated data also naturally inherit any past biased or discriminative tendencies. The overarching goal of the award is to mitigate this problem by using information representations that maintain its utility while eliminating information that could lead to discrimination against subgroups in a population. Specifically, this project will study the different trade-offs between utility and fairness of different data representations, and then identify solutions to reduce the gap to the best trade-off. Then, new representations and corresponding algorithms will be developed guided by such trade-off analysis. The investigators will provide performance limits based on the developed theory, and also evidence of efficacy in order to obtain fair machine learning systems and to gain societal trust. The application domain used in this research is face recognition systems.The undergraduate and graduate students who participate in the project will be trained to conduct cutting-edge research to integrate fairness into artificial intelligent based systems.The research agenda of this project is centered around answering two questions on learning fair representations, (i) What are the fundamental trade-offs between utility and fairness of data representations?, (ii) How to devise practical fair representation learning algorithms that can mitigate bias in machine learning systems and provably achieve the theoretical utility-fairness trade-offs? To answer the first question, the project will theoretically elucidate and empirically quantify the different trade-offs inherent to utility. This will be done consideringdifferent fairness definitions such as demographic parity, equalized odds, and equality of opportunity. To answer the second question, the project will develop representation learning algorithms that (a) are analytically tractable and provably fair, (b) mitigate worst-case bias, as opposed to average bias over instances or demographic groups, (c) are fair with respect to demographic information that is only partially known or fully unknown, and (d) mitigate demographic bias both due to an imbalance in samples as well as features through optimal data sampling and projection.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于人工智能的计算机系统越来越依赖于有效的信息表示,以支持从图像识别系统到通过面部识别的身份控制的领域中的决策。然而,依赖传统统计数据和历史或人工数据预测的系统也会自然继承任何过去的偏见或歧视倾向。该奖项的总体目标是通过使用保持其实用性的信息表示,同时消除可能导致对人口中亚群体歧视的信息,来缓解这一问题。具体而言,本项目将研究不同数据表示的效用和公平性之间的不同权衡,然后确定解决方案,以减少差距,以达到最佳权衡。然后,新的表示和相应的算法将开发这种权衡分析的指导。研究人员将根据开发的理论提供性能限制,以及有效性证据,以获得公平的机器学习系统并获得社会信任。本研究的应用领域是人脸识别系统。参与该项目的本科生和研究生将接受培训,进行前沿研究,将公平性融入基于人工智能的系统。本项目的研究议程围绕着回答两个关于学习公平表示的问题,(i)数据表示的效用和公平性之间的基本权衡是什么?(ii)如何设计实用的公平表示学习算法,以减轻机器学习系统中的偏见,并可证明地实现理论上的效用-公平性权衡?为了回答第一个问题,该项目将从理论上阐明并从经验上量化效用所固有的不同权衡。这将通过不同的公平定义来完成,如人口均等,均等化的几率和机会均等。为了回答第二个问题,该项目将开发表示学习算法,该算法(a)在分析上易于处理且可证明是公平的,(B)减轻最坏情况下的偏差,而不是对实例或人口统计组的平均偏差,(c)对于仅部分已知或完全未知的人口统计信息是公平的,以及(d)通过最佳的数据采样和预测,减轻由于样本和特征不平衡而造成的人口统计偏差。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Characterizing the Trade-off in Invariant Representation Learning
  • DOI:
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bashir Sadeghi;Sepehr Dehdashtian;Vishnu Naresh Boddeti
  • 通讯作者:
    Bashir Sadeghi;Sepehr Dehdashtian;Vishnu Naresh Boddeti
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vishnu Boddeti其他文献

MOAZ: A Multi-Objective AutoML-Zero Framework
MOAZ:多目标 AutoML-Zero 框架

Vishnu Boddeti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

FAIR-数据驱动新材料研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
PANDA/FAIR上粲重子产生的理论研究
  • 批准号:
    11247298
  • 批准年份:
    2012
  • 资助金额:
    5.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Fair Game: valuing the bio-cultural heritage of fallow deer and their venison for food security, sustainable woodlands and biodiversity
公平游戏:重视小鹿及其鹿肉的生物文化遗产,以促进粮食安全、可持续林地和生物多样性
  • 批准号:
    AH/Z505675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Research Grant
(Un)Fair inequality in the labor market: A global study
(Un)劳动力市场的公平不平等:一项全球研究
  • 批准号:
    MR/X033333/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Fellowship
Tri-fair Biometrics: 生体認証の3要件を満たす公平な生体認証システムの実現
Tri-fair Biometrics:实现公平的生物识别认证系统,满足生物识别认证的三个要求
  • 批准号:
    23K28085
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Continuing Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
  • 批准号:
    2319742
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Standard Grant
Fair and modular blockchain data infrastructure for open science and society (FairOnChain)
用于开放科学和社会的公平和模块化区块链数据基础设施(FairOnChain)
  • 批准号:
    EP/Y036247/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Research Grant
Making Software FAIR: A machine-assisted workflow for the research software lifecycle
让软件公平:研究软件生命周期的机器辅助工作流程
  • 批准号:
    EP/Y036352/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Research Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Continuing Grant
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了