FAI: A Human-Centered Approach to Developing Accessible and Reliable Machine Translation
FAI:以人为本的方法来开发可访问且可靠的机器翻译
基本信息
- 批准号:2147292
- 负责人:
- 金额:$ 39.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Fairness in AI project aims to develop technology to reliably enhance cross-lingual communication in high-stakes contexts, such as when a person needs to communicate with someone who does not speak their language to get health care advice or apply for a job. While machine translation technology is frequently used in these conditions, existing systems often make errors that can have severe consequences for a patient or a job applicant. Further, it is challenging for people to know when automatic translations might be wrong when they do not understand the source or target language for translation. This project addresses this issue by developing accessible and reliable machine translation for lay users. It will provide mechanisms to guide users to recognize and recover from translation errors, and help them make better decisions given imperfect translations. As a result, more people will be able to use machine translation reliably to communicate across language barriers, which can have far-reaching positive consequences on their lives.Specifically, this project contributes advances in natural language processing and interaction design for a bot that can be added to any text-based conversation, where it can play a role similar to an interpreter. The bot will guide users to write appropriate inputs for machine translation, help users understand outputs, and intervene when it detects miscommunication and conversational breakdowns. The design of the bot will follow a human-centered design process, consisting of need-finding studies, iterative system development and deployment, and user evaluations via controlled experiments. On the back-end, the bot will rely on quality estimation models that automatically detect translation errors to produce useful guidance for end-users. The data, models, and design recommendations generated by this project will advance computational research in multiple ways. It will lead to new machine translation quality estimation techniques that take into account the impact of errors on end-users; it will expand the scope of explainable artificial intelligence research to encompass the considerable risks and harms caused by language generation tools, and it will generate new interface design that assists lay users' sense making of artificial intelligence systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发技术,以可靠地增强高风险环境中的跨语言沟通,例如当一个人需要与不会说他们的语言的人沟通以获得医疗保健建议或申请工作时。虽然机器翻译技术经常用于这些情况,但现有系统经常会出错,可能会对患者或求职者造成严重后果。此外,当人们不理解翻译的源语言或目标语言时,知道自动翻译何时可能是错误的是具有挑战性的。该项目通过为外行用户开发可访问和可靠的机器翻译来解决这个问题。它将提供指导用户识别翻译错误并从中恢复的机制,并帮助他们在不完美的翻译中做出更好的决定。因此,越来越多的人将能够使用机器翻译可靠地跨越语言障碍进行交流,这可能会对他们的生活产生深远的积极影响。具体来说,该项目为机器人的自然语言处理和交互设计做出了贡献,该机器人可以添加到任何基于文本的对话中,在那里它可以扮演类似于翻译的角色。机器人将引导用户为机器翻译编写适当的输入,帮助用户理解输出,并在检测到误解和对话故障时进行干预。机器人的设计将遵循以人为本的设计过程,包括需求发现研究、迭代系统开发和部署以及通过受控实验进行的用户评估。在后端,机器人将依赖于质量评估模型,自动检测翻译错误,为最终用户提供有用的指导。该项目产生的数据、模型和设计建议将以多种方式推进计算研究。这将导致新的机器翻译质量评估技术,考虑到错误对最终用户的影响;它将扩大可解释的人工智能研究的范围,以涵盖语言生成工具造成的相当大的风险和危害,它将产生新的界面设计,帮助非专业用户对人工智能系统的理解。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bridging Background Knowledge Gaps in Translation with Automatic Explicitation
通过自动解释弥合翻译中的背景知识差距
- DOI:10.18653/v1/2023.emnlp-main.603
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Han, HyoJung;Boyd-Graber, Jordan;Carpuat, Marine
- 通讯作者:Carpuat, Marine
Quality Estimation via Backtranslation at the WMT 2022 Quality Estimation Task
WMT 2022 质量评估任务中通过回译进行质量评估
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sweta Agrawal, Nikita Mehandru
- 通讯作者:Sweta Agrawal, Nikita Mehandru
Explaining with Contrastive Phrasal Highlighting: A Case Study in Assisting Humans to Detect Translation Differences
用对比短语突出显示进行解释:协助人类检测翻译差异的案例研究
- DOI:10.18653/v1/2023.emnlp-main.690
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Briakou, Eleftheria;Goyal, Navita;Carpuat, Marine
- 通讯作者:Carpuat, Marine
Physician Detection of Clinical Harm in Machine Translation: Quality Estimation Aids in Reliance and Backtranslation Identifies Critical Errors
机器翻译中临床危害的医生检测:质量估计有助于信赖和反向翻译识别关键错误
- DOI:10.18653/v1/2023.emnlp-main.712
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mehandru, Nikita;Agrawal, Sweta;Xiao, Yimin;Gao, Ge;Khoong, Elaine;Carpuat, Marine;Salehi, Niloufar
- 通讯作者:Salehi, Niloufar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marine Carpuat其他文献
Proceedings of the Second Workshop on Discourse in Machine Translation
第二届机器翻译话语研讨会论文集
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
B. Webber;Marine Carpuat;Andrei Popescu;Christian Hardmeier - 通讯作者:
Christian Hardmeier
Why Nitpicking Works: Evidence for Occam’s Razor in Error Correctors
为什么吹毛求疵有效:纠错器中奥卡姆剃刀原理的证据
- DOI:
10.3115/1220355.1220413 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Dekai Wu;G. Ngai;Marine Carpuat - 通讯作者:
Marine Carpuat
A Review of Human Evaluation for Style Transfer
风格迁移的人类评估综述
- DOI:
10.18653/v1/2021.gem-1.6 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Eleftheria Briakou;Sweta Agrawal;Ke Zhang;Joel Tetreault;Marine Carpuat - 通讯作者:
Marine Carpuat
Keep it Private: Unsupervised Privatization of Online Text
保持私密性:在线文本的无监督私有化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Calvin Bao;Marine Carpuat - 通讯作者:
Marine Carpuat
Controlling Text Complexity in Neural Machine Translation
控制神经机器翻译中的文本复杂性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Sweta Agrawal;Marine Carpuat - 通讯作者:
Marine Carpuat
Marine Carpuat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marine Carpuat', 18)}}的其他基金
CAREER: Semantic Divergences Across the Language Barrier
职业:跨越语言障碍的语义分歧
- 批准号:
1750695 - 财政年份:2018
- 资助金额:
$ 39.3万 - 项目类别:
Continuing Grant
Student Travel Support for 2017 Workshop for Women and Underrepresented Minorities in NLP
2017 年 NLP 中女性和代表性不足的少数群体研讨会的学生旅行支持
- 批准号:
1745535 - 财政年份:2017
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
ACL 2017 Student Research Workshop
ACL 2017 学生研究研讨会
- 批准号:
1714855 - 财政年份:2017
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
- 批准号:
2348926 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
Place-Based, Human-Centered Networks to Enhance Community Resilience and Equity
以地方为基础、以人为本的网络,以增强社区的弹性和公平性
- 批准号:
2242719 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
REU Site: Human-Centered Computing for Social Good
REU 网站:以人为本的计算,造福社会
- 批准号:
2349070 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
A human-centered modeling approach to simulate best management practices and behaviors under uncertainty to meet water quality guidelines
以人为本的建模方法,用于模拟不确定情况下的最佳管理实践和行为,以满足水质准则
- 批准号:
2342309 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
NSF-JST: An Inclusive Human-Centered Risk Management Modeling Framework for Flood Resilience
NSF-JST:以人为本的包容性防洪风险管理模型框架
- 批准号:
2342842 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
Study on the Transformation of Human-Animal Relationships in Modern Japan Centered on the Fur Farming Industry
以毛皮养殖业为中心的近代日本人与动物关系的变迁研究
- 批准号:
23K00823 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)