FAI: Toward Fair Decision Making and Resource Allocation with Application to AI-Assisted Graduate Admission and Degree Completion

FAI:通过应用于人工智能辅助研究生入学和学位完成来实现公平决策和资源分配

基本信息

  • 批准号:
    2147276
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Machine learning systems have become prominent in many applications in everyday life, such as healthcare, finance, hiring, and education. These systems are intended to improve upon human decision-making by finding patterns in massive amounts of data, beyond what can be intuited by humans. However, it has been demonstrated that these systems learn and propagate similar biases present in human decision-making. This project aims to develop general theory and techniques on fairness in AI, with applications to improving retention and graduation rates of under-represented groups in STEM graduate programs. Recent research has shown that simply focusing on admission rates is not sufficient to improve graduation rates. This project is envisioned to go beyond designing "fair classifiers" such as fair graduate admission that satisfy a static fairness notion in a single moment in time, and designs AI systems that make decisions over a period of time with the goal of ensuring overall long-term fair outcomes at the completion of a process. The use of data-driven AI solutions can allow the detection of patterns missed by humans, to empower targeted intervention and fair resource allocation over the course of an extended period of time. The research from this project will contribute to reducing bias in the admissions process and improving completion rates in graduate programs as well as fair decision-making in general applications of machine learning.This project will focus on machine learning algorithms for resource allocation, which can be used at various points throughout a process such as in education. The team will propose new notions of fairness and show the applicability of those notions to settings in which limited resources, such as acceptance to the program, faculty mentoring, professional development, and paid assistantships or fellowships, are allocated to students fairly. The proposed research will also go beyond fairness in task-specific supervised learning settings and investigate fairness in unsupervised learning that guarantees to learn fair representations or generative models for multiple downstream tasks. The team will address the practical problems that arise due to uncongenial data in real-world sequential decision-making systems, including distribution shifts between training and test, imbalanced data, and missing sensitive attributes. This proposal contains a comprehensive plan to incorporate its research into education at high school, undergraduate, and graduate levels, as well as plans for within- and cross-disciplinary dissemination of research results, outreach, and other synergistic activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习系统在日常生活中的许多应用中已经变得突出,例如医疗保健,金融,招聘和教育。这些系统旨在通过在大量数据中发现模式来改善人类的决策,而这些模式超出了人类的直觉。然而,已经证明,这些系统学习和传播人类决策中存在的类似偏见。该项目旨在开发关于人工智能公平性的一般理论和技术,并应用于提高STEM研究生课程中代表性不足群体的保留率和毕业率。最近的研究表明,仅仅关注录取率不足以提高毕业率。该项目的设想是超越设计“公平分类器”,例如在单一时刻满足静态公平概念的公平研究生入学,并设计在一段时间内做出决策的人工智能系统,目标是确保在完成过程时的整体长期公平结果。使用数据驱动的人工智能解决方案可以检测人类错过的模式,从而在很长一段时间内进行有针对性的干预和公平的资源分配。 该项目的研究将有助于减少招生过程中的偏见,提高研究生课程的完成率,以及机器学习一般应用中的公平决策。该项目将专注于用于资源分配的机器学习算法,该算法可用于整个过程的各个点,例如教育。该团队将提出新的公平概念,并显示这些概念的适用性,在有限的资源,如接受程序,教师指导,专业发展,并支付助学金或奖学金,公平地分配给学生的设置。拟议的研究还将超越特定任务监督学习环境中的公平性,并研究无监督学习中的公平性,以保证为多个下游任务学习公平的表示或生成模型。该团队将解决由于现实世界中的顺序决策系统中的不一致数据而产生的实际问题,包括训练和测试之间的分布变化,不平衡的数据和缺失的敏感属性。该提案包含了一个将其研究纳入高中、本科和研究生教育的全面计划,以及研究成果的学科内和跨学科传播、外展和其他协同活动的计划。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL
  • DOI:
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangyu Liu;Souradip Chakraborty;Yanchao Sun;Furong Huang
  • 通讯作者:
    Xiangyu Liu;Souradip Chakraborty;Yanchao Sun;Furong Huang
Secure Sampling with Sublinear Communication
使用次线性通信进行安全采样
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Choi, Seung Geol;Dachman-Soled, Dana;Gordon, S. Dov;Liu, Linsheng;Yerukhimovich, Arkady
  • 通讯作者:
    Yerukhimovich, Arkady
Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations
  • DOI:
    10.48550/arxiv.2307.12062
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongyuan Liang;Yanchao Sun;Ruijie Zheng;Xiangyu Liu;T. Sandholm;Furong Huang;S. McAleer
  • 通讯作者:
    Yongyuan Liang;Yanchao Sun;Ruijie Zheng;Xiangyu Liu;T. Sandholm;Furong Huang;S. McAleer
Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness
  • DOI:
    10.48550/arxiv.2302.03015
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuancheng Xu;Yanchao Sun;Micah Goldblum;T. Goldstein;Furong Huang
  • 通讯作者:
    Yuancheng Xu;Yanchao Sun;Micah Goldblum;T. Goldstein;Furong Huang
Large-Scale Distributed Learning via Private On-Device LSH
通过私有设备上 LSH 进行大规模分布式学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Furong Huang其他文献

The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs
海马体和颞中回在处理创意设计中的新颖性和实用性特征时形成新的联想和概念的功能
  • DOI:
    10.1016/j.neuroimage.2020.116751
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Jingyuan Ren;Furong Huang;Ying Zhou;Liping Zhuang;Jiahua Xu;Chuanji Gao;Shaozheng Qin;Jing Luo
  • 通讯作者:
    Jing Luo
Manuka honey adulteration detection based on near-infrared spectroscopy combined with aquaphotomics
基于近红外光谱结合水光组学的麦卢卡蜂蜜掺假检测
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinhao Yang;Peiwen Guang;Guoze Xu;Siqi Zhu;Zhen;Furong Huang
  • 通讯作者:
    Furong Huang
Correlation of clinical response to BMS-354825 with BCR-ABL mutation status in imatinib-resistant patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-associated acute lymphoblastic leukemia (Ph+ ALL)
慢性粒细胞白血病 (CML) 和费城染色体相关急性淋巴细胞白血病 (Ph ALL) 伊马替尼耐药患者对 BMS-354825 的临床反应与 BCR-ABL 突变状态的相关性
  • DOI:
    10.1200/jco.2005.23.16_suppl.6521
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Shah;C. Sawyers;H. Kantarjian;N. Donato;J. Nicoll;Jordi Cortés;R. Paquette;Furong Huang;E. Clark;M. Talpaz
  • 通讯作者:
    M. Talpaz
Stabilization of oncogenic transcripts by the IGF2BP3/ELAVL1 complex promotes tumorigenicity in colorectal cancer.
IGF2BP3/ELAVL1 复合物对致癌转录物的稳定可促进结直肠癌的致瘤性。
  • DOI:
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Kexin Li;Furong Huang;Yan Li;Dongdong Li;Hong Lin;Ruo-Xuan Ni;Qiao Zhang;Mei Zhao;Shengkai Huang;Liang Zou;Changzhi Huang
  • 通讯作者:
    Changzhi Huang
The impact of social distancing measures on anti–JC virus serostatus changes before and during the COVID-19 pandemic in US patients with multiple sclerosis
在 COVID-19 大流行之前和期间,社交距离措施对美国多发性硬化症患者抗 JC 病毒血清状态变化的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen C Krieger;Susie Sinks;Furong Huang;Julie Steverson;Tamar J. Kalina;Kurt White;Robin L Avila
  • 通讯作者:
    Robin L Avila

Furong Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Furong Huang', 18)}}的其他基金

CRII: RI: Principled Methods for Learning and Understanding of Neural Networks
CRII:RI:学习和理解神经网络的原则方法
  • 批准号:
    1850220
  • 财政年份:
    2019
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
  • 批准号:
    2338069
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mentored Excellence Toward Research and Industry Careers 2
指导卓越研究和行业职业 2
  • 批准号:
    2322416
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
  • 批准号:
    2343008
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了