Tailoring the Properties of Molecular Assemblies via Noncovalent Interactions
通过非共价相互作用定制分子组装体的性质
基本信息
- 批准号:2147956
- 负责人:
- 金额:$ 35.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Molecular scale noncovalent interactions pervade biological, materials, and chemical systems. Although relatively weak on an individual level, they can have a strong impact on molecular structuring and dynamics when acting in concert. The effects of hydrogen bonding are well-known, while the analogous interaction in some halogen-containing molecules, termed halogen bonding, is far less studied. The extent that halogen bonding can direct the assembly of supramolecular structures with specific material characteristics is undetermined. Through the proposed studies, a new modeling paradigm will be developed that aims to provide unique chemical insight regarding the connectivity between the molecular-level and larger-scale material properties. This work is significant because it will identify molecular signatures in halogen bond donors and acceptors that control the assembly of these building blocks into supramolecular structures, thereby advancing our understanding of what dictates the material properties and providing a chemical route to modulate the observed behavior. The predictive approach represents an entirely new way to think about designing suprastructures with desired properties from the bottom up using noncovalent interactions as the assembly mechanism. The tunability of halogen bonds makes it possible to adjust the interaction strength on a fine level, allowing for additional control over assembly formation. Once the data-enabled optimization procedures are implemented, it will be possible to create assemblies with desired properties for particular tasks, which will represent a significant advance in functional materials design. Moreover, the general approach is not specific to a particular property and could be adapted for any application involving similar donor/acceptor building blocks. Controlling material assembly will enable vast new functionalities and catalyze transformative advances across a number of fields. Concurrent with the research, the teaching and outreach activities will educate the next generation of scientists on functional materials and engage a diverse student population on STEM topics, including historically underrepresented groups and those with learning disabilities. This project addresses the basic science knowledge gap associated with directed assembly, and it is consistent with the NSF mission of supporting fundamental research, tightly integrated with science education and community outreach.The overarching objective of this proposal is to develop molecular assemblies, bound by halogen bonds and other noncovalent interactions, with characteristics that facilitate more efficient chemical and environmental processes. It is hypothesized that tuning the strength and nature of halogen bonding between the molecular components will enable the ability to direct assembly formation and tailor the structural, electronic, and optical properties of the system. Modeling studies will guide bottom-up materials design using molecular-level building blocks to generate supramolecular structures and control their function. Molecular quantum chemistry and atomistic simulation will be used to produce a predictive formalism that is well suited for future integration of advanced optimization algorithms. Specific aims include the following: (1) Characterize the molecular properties of halogen bond donors and acceptors to ascertain the effects of geometry, atomic substitution, and functionalization; (2) Assess stability, quantify halogen bonding strength, and determine the nature of noncovalent interactions in donor/acceptor units; and (3) Direct the assembly of extended two- and three-dimensional halogen bonded networks with tailored structural, electronic, and optical properties. These aims align with the overarching objective of directed assembly of supramolecular structures with desired characteristics, while concurrently addressing research that enables more efficient chemical processes, improves environmental sustainability, and advances the design of functional materials with tailored properties. These studies will provide predictive capabilities for a particular class of donor/acceptor networks; however, the underlying principles of directed assembly are highly relevant to other materials and biological systems. Thus, the proposed research is of great fundamental importance and impactful to many scientific fields in chemistry, biology, physics, and materials science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分子尺度的非共价相互作用遍及生物、材料和化学系统。虽然在个体水平上相对较弱,但当它们协同作用时,它们可以对分子结构和动力学产生强烈影响。氢键的作用是众所周知的,而在一些含卤素的分子中类似的相互作用,称为卤素键合,研究得少得多。卤素键合可以指导具有特定材料特性的超分子结构的组装的程度尚未确定。通过拟议的研究,将开发一种新的建模范式,旨在提供关于分子水平和大尺度材料特性之间的连接性的独特化学见解。这项工作是重要的,因为它将识别卤素键供体和受体中的分子特征,这些分子特征控制这些构建块组装成超分子结构,从而推进我们对决定材料特性的理解,并提供调节观察到的行为的化学途径。预测方法代表了一种全新的方式来思考设计超结构与所需的性能从下而上使用非共价相互作用的组装机制。卤素键的可调性使得可以在精细水平上调节相互作用强度,从而允许对组装形成的额外控制。一旦实现了数据支持的优化程序,就有可能为特定任务创建具有所需特性的组件,这将代表功能材料设计的重大进步。此外,一般方法不特定于特定性质,并且可以适用于涉及类似供体/受体结构单元的任何应用。控制材料组装将实现大量新功能,并促进多个领域的变革性进步。在研究的同时,教学和推广活动将教育下一代科学家使用功能材料,并让不同的学生群体参与STEM主题,包括历史上代表性不足的群体和有学习障碍的群体。该项目解决了与定向组装相关的基础科学知识缺口,并与NSF支持基础研究的使命相一致,与科学教育和社区外展紧密结合,该提案的总体目标是开发分子组装体,由卤素键和其他非共价相互作用结合,具有促进更有效的化学和环境过程的特性。据推测,调整分子组分之间的卤素键合的强度和性质将使得能够直接组装形成并定制系统的结构、电子和光学性质。建模研究将指导自下而上的材料设计,使用分子水平的构建块来生成超分子结构并控制其功能。分子量子化学和原子模拟将被用来产生一个预测的形式主义,非常适合于未来的先进优化算法的集成。具体目标包括:(1)表征卤素键供体和受体的分子特性,以确定几何形状、原子取代和官能化的影响;(2)评估稳定性,量化卤素键强度,并确定供体/受体单元中非共价相互作用的性质;和(3)指导具有定制结构、电子和光学性质的扩展二维和三维卤素键合网络的组装。这些目标与具有所需特性的超分子结构的定向组装的总体目标一致,同时解决能够实现更有效的化学过程,改善环境可持续性,并推进具有定制特性的功能材料设计的研究。这些研究将为特定类别的供体/受体网络提供预测能力;然而,定向组装的基本原理与其他材料和生物系统高度相关。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shedding Light on the Vibrational Signatures in Halogen‐Bonded Graphitic Carbon Nitride Building Blocks
揭示卤素-粘结石墨碳氮化碳砌块的振动特征
- DOI:10.1002/cphc.202200812
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Ellington, Thomas L.;Devore, Daniel P.;Uvin G. De Alwis, W. M.;French, Kirk A.;Shuford, Kevin L.
- 通讯作者:Shuford, Kevin L.
Anisotropic Behavior of Optical Properties in Edge-Modified Phosphorene Quantum Dots
- DOI:10.1021/acs.jpcc.3c01463
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:W. D. De Alwis;K. Shuford
- 通讯作者:W. D. De Alwis;K. Shuford
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Shuford其他文献
Kevin Shuford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Formation mechanism and transport properties of carbon nanotube molecular junctions by chirality transformation
手性变换碳纳米管分子结的形成机制及输运特性
- 批准号:
23K26489 - 财政年份:2024
- 资助金额:
$ 35.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Formation mechanism and transport properties of carbon nanotube molecular junctions by chirality transformation
手性变换碳纳米管分子结的形成机制及输运特性
- 批准号:
23H01796 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of atomically precise nano-molecular composite for investigation and exploration of their structure and properties
开发原子级精确的纳米分子复合材料,用于研究和探索其结构和性能
- 批准号:
23H01917 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical study of novel topological electronic properties arising from the structure and molecular degree of freedom of high-dimensional molecular crystals
高维分子晶体的结构和分子自由度引起的新型拓扑电子特性的理论研究
- 批准号:
23K03322 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
CAREER: Molecular Tools to Tune the Structure-Function Properties of Nanoscale Objects by Reconfiguration of pi-Conjugated Superstructures
职业:通过重新配置 pi 共轭超结构来调整纳米级物体的结构功能特性的分子工具
- 批准号:
2401869 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Continuing Grant
The facts of the matter: decoding the molecular properties of brain white matter using cell-type-specific quantitative proteomics
事实真相:使用细胞类型特异性定量蛋白质组学解码大脑白质的分子特性
- 批准号:
10685777 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
CAREER: Molecular-level Understanding of Conductive Polymer Properties
职业:对导电聚合物特性的分子水平理解
- 批准号:
2235161 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Continuing Grant
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
- 批准号:
23K17905 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Multiscale Simulation of Polymer Degradation: From Molecular Dynamics to Macroscopic Properties
聚合物降解的多尺度模拟:从分子动力学到宏观性能
- 批准号:
22KJ1543 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Grant-in-Aid for JSPS Fellows