CAREER: Molecular-level Understanding of Conductive Polymer Properties

职业:对导电聚合物特性的分子水平理解

基本信息

  • 批准号:
    2235161
  • 负责人:
  • 金额:
    $ 65.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY:Understanding how electricity and charged species (ions) flow through polymer materials is necessary to support the development of materials for improved water treatment technologies, chemical sensors, and batteries. Certain charged polymers are interesting in this area because they both conduct electricity and undergo electro-chemical reactions to bind ions from solutions. Theoretically, with improved understanding and refinements, charged polymers in this class could conduct electricity as well as metals, and store as much charge as materials used in lithium-ion batteries. But currently, these materials fall short of these theoretical limits. To date, scientists do not fully understand the fundamental factors limiting these polymers from achieving their theoretical potential. In this project, researchers at the University of Missouri will work to understand the molecular origins of electronic and ionic conductivity in these charged polymers. To accomplish this, University of Missouri researchers will use a new way of making these polymers that allows for the rapid generation of precisely controlled sequences of molecular building blocks (monomers) within the polymer chains. They will measure how different monomer sequences lead to interaction effects between monomers and drive changes in the flow of electrons and ions. This research will fill a critical gap in understanding the molecular-scale origins of electronic and ionic conductivity in charged polymers and is expected to help researchers develop improved materials for a range of applications including water treatment, chemical sensors, and battery technologies. These research activities will be complemented with the development of hands-on interactive learning modules to make the concepts surrounding the flow of electrons and ions through polymers tangible and engaging for elementary school students.TECHNICAL SUMMARY:This project will establish structure-property understanding connecting local and short-range (5 nm) structure of conjugated hetero-atom-containing copolymers with their electronic and ionic conductivity. Researchers will employ gas-phase oxidative molecular layer deposition (oMLD) synthesis to control the monomer sequence within copolymers containing two or more monomers of pyrrole, thiophene, furan, aniline, and related monomers, coupled with in situ characterization to monitor electrical properties during synthesis and chemical post-processing. Ex situ synchrotron and electron microscopy measurements will provide further insights into molecular structure origins of observed electronic and ionic transport properties. This project's overall goals are to: (1) understand mechanisms of electronic transport along copolymer chains, (2) understand mechanisms of anion transport through varying polymer coordination sites, and (3) engage the public and inspire young scientists with polymer research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:了解电力和带电物种(离子)如何通过聚合物材料流动以支持改进水处理技术,化学传感器和电池的材料的开发。某些带电的聚合物在该区域很有趣,因为它们既可以进行电力,又可以进行电化学反应以结合溶液的离子。从理论上讲,随着理解和改进的提高,该班级的带电聚合物可以进行电力和金属,并存储与锂离子电池中使用的材料一样多的电荷。但是目前,这些材料尚未达到这些理论限制。迄今为止,科学家还没有完全理解限制这些聚合物实现其理论潜力的基本因素。在这个项目中,密苏里大学的研究人员将努力了解这些带电聚合物中电子和离子电导率的分子起源。为此,密苏里大学的研究人员将使用一种新的方法来制造这些聚合物,从而可以快速生成聚合物链中的分子构件(单体)精确控制的序列。 他们将测量不同的单体序列如何导致单体之间的相互作用和电子和离子流动的驱动变化。这项研究将填补理解带电聚合物电子和离子电导率的分子尺度起源的关键空白,并有望帮助研究人员为包括水处理,化学传感器和电池技术在内的一系列应用开发改进的材料。 These research activities will be complemented with the development of hands-on interactive learning modules to make the concepts surrounding the flow of electrons and ions through polymers tangible and engaging for elementary school students.TECHNICAL SUMMARY:This project will establish structure-property understanding connecting local and short-range (5 nm) structure of conjugated hetero-atom-containing copolymers with their electronic and ionic conductivity.研究人员将采用气相氧化分子层沉积(OMLD)合成,以控制含有两个或多个吡咯,硫代,硫代,呋喃,​​苯胺和相关单体的共聚物中的单体序列,并在合成和化学后的合成过程中与原位表征相结合。事前同步加速器和电子显微镜测量结果将为观察到的电子和离子传输特性的分子结构起源提供进一步的见解。该项目的总体目标是:(1)了解沿共聚链的电子传输的机制,(2)了解通过不同的聚合物协调站点来理解阴离子运输的机制,(3)与公众互动并激发了年轻科学家的聚合物研究。该奖项通过NSF的法定任务,反映了通过评估的构成群体的支持者,该奖项被认为是众所周知的构成者的构成者,并构成了基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Young其他文献

Matthias Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Young', 18)}}的其他基金

I-Corps: Molecular layer deposition for polymer cathode fabrication
I-Corps:用于聚合物阴极制造的分子层沉积
  • 批准号:
    2344900
  • 财政年份:
    2023
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Standard Grant
Understanding interphase layer formation at the cathode/solid-electrolyte junction
了解阴极/固体电解质连接处的界面层形成
  • 批准号:
    2219060
  • 财政年份:
    2022
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Standard Grant
EAGER: Polymer Sponge Electrodes for Energy-Efficient Desalination
EAGER:用于节能海水淡化的聚合物海绵电极
  • 批准号:
    2131282
  • 财政年份:
    2021
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Standard Grant

相似国自然基金

食用真菌细胞核等级秩序及其分子调控机制的研究
  • 批准号:
    32372789
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于广义默里定律设计合成等级孔分子筛及等级扩散规律研究
  • 批准号:
    22302152
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
雌激素上调鸡等级前卵泡颗粒细胞DHCR7表达的分子机制及功能分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
雌激素上调鸡等级前卵泡颗粒细胞DHCR7表达的分子机制及功能分析
  • 批准号:
    32272869
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
酸调变等级孔Y型分子筛定制构筑及其催化木质纤维转化为糠醛的研究
  • 批准号:
    52206293
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Illuminating molecular-level effects in new plant-based nanocomposites for additive manufacturing by stereolithography
职业:通过立体光刻阐明用于增材制造的新型植物基纳米复合材料的分子水平效应
  • 批准号:
    2337946
  • 财政年份:
    2024
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Continuing Grant
2023 Neurotrophic Mechanisms in Health and Disease
2023 健康与疾病中的神经营养机制
  • 批准号:
    10654336
  • 财政年份:
    2023
  • 资助金额:
    $ 65.67万
  • 项目类别:
Investigating Cellular Senescence at the Single Cell Level
在单细胞水平上研究细胞衰老
  • 批准号:
    10606940
  • 财政年份:
    2023
  • 资助金额:
    $ 65.67万
  • 项目类别:
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
  • 批准号:
    2337902
  • 财政年份:
    2023
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Standard Grant
CAREER: Molecular-Level Behavior of Chromophores in Dissolved Organic Matter
职业:溶解有机物中发色团的分子水平行为
  • 批准号:
    2237194
  • 财政年份:
    2023
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了