Transitions: Creating a Trans-Disciplinary Approach to Discover Multi-Scale Control Mechanisms of Plant Morphogenesis
转变:创建跨学科方法来发现植物形态发生的多尺度控制机制
基本信息
- 批准号:2148122
- 负责人:
- 金额:$ 74.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).In crop species, the architecture of the plant is a primary determinant of yield and can define its value as a renewable biomaterial. Cells are the building blocks of architectural traits and their growth is driven by a large internal pressure that makes the cells turgid and subjects the tough outer cell to very high tensile forces. The material properties of the cell wall determine the patterns of growth across a wide range of spatial scales. A major challenge in plant biology is to understand how genetic pathways and proteins inside the cell control the extracellular properties of polysaccharides to dictate growth patterns. The protein machineries inside the cell need to interpret information from the cell wall so that changes in cell size and shape can be predictable. Plant growth systems can be thought of as genetically encoded biomechanical machines that self-assemble in predictable ways. Progress in unravelling the underlying control mechanisms has been hindered by the lack of interdisciplinary approaches that combine the concepts of physics and material science with those of plant genetics and cell biology. There is a strong need for biologists to be able to develop and fully characterize mechanical models of plant development that provide the knowledge base for understanding the cellular mechanisms of plant morphogenesis and the downstream application of this knowledge to agriculture. The research and learning activities in this project will seed new approaches to analyze and manipulate growth patterns. Established experts and junior scientists in engineering and biology will broadly integrate mechanical modelling and micromechanical analyses with plant cell biology. The research team will create learning programs to make this cross-training generalizable and to make more user friendly models that can be widely adopted by the research and educational communities. American Rescue Plan funding provides support for this investigator at a critical stage in his career.Plant morphology control is a multi-scale integrated process in which cytoskeletal and cell wall systems interact to generate adaptive growth patterns. However, our understanding of how subcellular growth patterns are determined and how they scale to influence cell-, tissue-, and organ-level phenotypes are not known. Historical assumptions about uniform diffuse growth are likely incorrect as most cell types have heterogeneous growth patterns. In addition, it has been difficult to quantitatively predict tensile force patterns in the wall, because they depend on turgor pressure, multiple types of geometric features, and the material properties of the wall. Finite element modelling provides an efficient path forward because it simulates the cells as a thin-walled pressurized shells and can be used to quantitatively simulate the tensile forces and growth patterns with realistic cell and tissue geometries. The model also makes specific predictions about the location and type of cell wall heterogeneity that drive plant cell growth and how cell wall forces can be sensed by the cytoskeleton. This “Transitions to Excellence” project will develop a novel learning and research program that will broadly enable biologists and engineers to rigorously integrate finite element modelling, experimental validation, and model refinement. This approach and the single cell and organ systems that will be analyzed, have the potential to define generalizable morphogenesis “rules” that operate from the nanometer to centimeter scales to program functional traits. This research will serve as a framework to create more sophisticated models with sufficient detail to inform strategies to genetically engineer plant phenotypes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。在作物物种中,植物的结构是产量的主要决定因素,可以定义其作为可再生生物材料的价值。细胞是建筑特征的基石,它们的生长是由巨大的内部压力驱动的,这种压力使细胞膨胀,并使坚韧的外部细胞受到非常高的张力。细胞壁的材料特性决定了在广泛的空间尺度上的生长模式。植物生物学中的一个主要挑战是了解细胞内的遗传途径和蛋白质如何控制多糖的胞外特性以决定生长模式。细胞内的蛋白质机器需要解释来自细胞壁的信息,以便可以预测细胞大小和形状的变化。植物生长系统可以被认为是基因编码的生物力学机器,以可预测的方式自我组装。由于缺乏将物理学和材料科学的概念与植物遗传学和细胞生物学的概念结合起来的联合收割机,在揭示潜在控制机制方面的进展受到阻碍。有一个强烈的需要,生物学家能够开发和充分表征植物发育的机械模型,为理解植物形态发生的细胞机制和下游应用这些知识的农业提供知识基础。该项目中的研究和学习活动将为分析和操纵增长模式提供新的方法。工程和生物学领域的专家和初级科学家将广泛地将机械建模和微机械分析与植物细胞生物学相结合。研究小组将创建学习计划,使这种交叉培训具有普遍性,并使更多的用户友好的模型,可以被研究和教育界广泛采用。美国救援计划的资金提供了支持,这位研究员在他的职业生涯的关键阶段。植物形态控制是一个多尺度的综合过程中,细胞骨架和细胞壁系统相互作用,以产生适应性的生长模式。然而,我们对亚细胞生长模式如何确定以及它们如何影响细胞,组织和器官水平表型的理解尚不清楚。关于均匀扩散生长的历史假设可能是不正确的,因为大多数细胞类型具有异质生长模式。此外,很难定量预测壁中的张力模式,因为它们取决于膨压、多种类型的几何特征和壁的材料特性。有限元建模提供了一条有效的前进道路,因为它将细胞模拟为薄壁加压壳,并且可以用于定量模拟具有真实细胞和组织几何形状的张力和生长模式。该模型还对驱动植物细胞生长的细胞壁异质性的位置和类型以及细胞壁力如何被细胞骨架感知进行了具体预测。这个“过渡到卓越”项目将开发一个新的学习和研究计划,将广泛使生物学家和工程师严格集成有限元建模,实验验证和模型细化。这种方法以及将要分析的单细胞和器官系统,有可能定义从纳米到厘米尺度操作的可推广的形态发生“规则”,以编程功能性状。这项研究将作为一个框架,以创建更复杂的模型,有足够的细节,为遗传工程植物表型的战略提供信息。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Szymanski其他文献
Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs
- DOI:
10.1007/bf00014930 - 发表时间:
1993-05-01 - 期刊:
- 影响因子:3.800
- 作者:
Margaret C. Gawienowski;Daniel Szymanski;Imara Y. Perera;Raymond E. Zielinski - 通讯作者:
Raymond E. Zielinski
Daniel Szymanski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Szymanski', 18)}}的其他基金
RESEARCH-PGR: A Systems Biology Approach to Enable Cotton Fiber Engineering
RESEARCH-PGR:实现棉纤维工程的系统生物学方法
- 批准号:
1951819 - 财政年份:2020
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
2018 Plant Cell Dynamics (PCD) Meeting; May 29-June 1, 2018; University of Wisconsin-Madison
2018植物细胞动力学(PCD)会议;
- 批准号:
1834879 - 财政年份:2018
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Experimental and Computational Approach to Discover Biomechanical Mechanisms of Leaf Epidermal Morphogenesis
合作研究:探索叶表皮形态发生生物力学机制的综合实验和计算方法
- 批准号:
1715544 - 财政年份:2017
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Conference: Plant Cell Dynamics 2017; May 30-June 2; Madison, WI
会议:植物细胞动力学2017;
- 批准号:
1738300 - 财政年份:2017
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
2015 Plant Cell Dynamics Conferenc; Madison, WI - June 16-19, 2015
2015植物细胞动力学会议;
- 批准号:
1539987 - 财政年份:2015
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Conference: 2014 Plant Cell Dynamics Meeting. June 4-7, Madison Wisconsin.
会议:2014植物细胞动力学会议。
- 批准号:
1442067 - 财政年份:2014
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Conference: 2013 Midwest Plant Cell Dynamics Meeting being held June 5-7, 2013 in Madison, WI
会议:2013 年中西部植物细胞动力学会议于 2013 年 6 月 5 日至 7 日在威斯康星州麦迪逊举行
- 批准号:
1339477 - 财政年份:2013
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Conference: Midwest Plant Cell Dynamics Meeting being held June 20-22, 2012 in Wisconsin, Madison
会议:中西部植物细胞动力学会议将于 2012 年 6 月 20 日至 22 日在威斯康星州麦迪逊市举行
- 批准号:
1238380 - 财政年份:2012
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Novel micromechanical and computational approaches to discover the mechanisms of symmetry breaking and polarized growth in dicot pavement cells
EAGER:协作研究:新的微机械和计算方法,用于发现双子叶植物路面细胞对称性破缺和极化生长的机制
- 批准号:
1249652 - 财政年份:2012
- 资助金额:
$ 74.99万 - 项目类别:
Continuing Grant
Novel Quantitative Proteomic Methods to Discover and Localize Endogenous Protein Complexes
发现和定位内源蛋白质复合物的新定量蛋白质组学方法
- 批准号:
1127027 - 财政年份:2011
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Creating a Composite EL Nino Record from the Lowland Neotropics
EAGER:创造低地新热带区综合厄尔尼诺记录
- 批准号:
2417794 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Creating a Path to Achieving Success and Sense of Belonging in Computer Science
创造一条在计算机科学领域取得成功和归属感的道路
- 批准号:
2322665 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Cooperative Agreement
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
- 批准号:
24K06129 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creating pH-sensitive self-healing concrete using sludge waste for sewers
利用下水道污泥废物制造 pH 敏感的自修复混凝土
- 批准号:
DP230100688 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Discovery Projects
Creating cosmopolitan rural communities through Japanese crafts: a comparative perspective with Portugal and Brazil
通过日本手工艺创建国际化农村社区:与葡萄牙和巴西的比较视角
- 批准号:
24K21000 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
EP/Y023250/1 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Research Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Creating a Grow-Your-Own Program for Recruiting and Supporting Computer Science Teacher Candidates in Rural Georgia
创建一个自己成长的计划,用于招募和支持佐治亚州农村地区的计算机科学教师候选人
- 批准号:
2344678 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Creating a Teen Science Cafe Movement
创建青少年科学咖啡馆运动
- 批准号:
2424451 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Continuing Grant