Transitions: Creating a Trans-Disciplinary Approach to Discover Multi-Scale Control Mechanisms of Plant Morphogenesis
转变:创建跨学科方法来发现植物形态发生的多尺度控制机制
基本信息
- 批准号:2148122
- 负责人:
- 金额:$ 74.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).In crop species, the architecture of the plant is a primary determinant of yield and can define its value as a renewable biomaterial. Cells are the building blocks of architectural traits and their growth is driven by a large internal pressure that makes the cells turgid and subjects the tough outer cell to very high tensile forces. The material properties of the cell wall determine the patterns of growth across a wide range of spatial scales. A major challenge in plant biology is to understand how genetic pathways and proteins inside the cell control the extracellular properties of polysaccharides to dictate growth patterns. The protein machineries inside the cell need to interpret information from the cell wall so that changes in cell size and shape can be predictable. Plant growth systems can be thought of as genetically encoded biomechanical machines that self-assemble in predictable ways. Progress in unravelling the underlying control mechanisms has been hindered by the lack of interdisciplinary approaches that combine the concepts of physics and material science with those of plant genetics and cell biology. There is a strong need for biologists to be able to develop and fully characterize mechanical models of plant development that provide the knowledge base for understanding the cellular mechanisms of plant morphogenesis and the downstream application of this knowledge to agriculture. The research and learning activities in this project will seed new approaches to analyze and manipulate growth patterns. Established experts and junior scientists in engineering and biology will broadly integrate mechanical modelling and micromechanical analyses with plant cell biology. The research team will create learning programs to make this cross-training generalizable and to make more user friendly models that can be widely adopted by the research and educational communities. American Rescue Plan funding provides support for this investigator at a critical stage in his career.Plant morphology control is a multi-scale integrated process in which cytoskeletal and cell wall systems interact to generate adaptive growth patterns. However, our understanding of how subcellular growth patterns are determined and how they scale to influence cell-, tissue-, and organ-level phenotypes are not known. Historical assumptions about uniform diffuse growth are likely incorrect as most cell types have heterogeneous growth patterns. In addition, it has been difficult to quantitatively predict tensile force patterns in the wall, because they depend on turgor pressure, multiple types of geometric features, and the material properties of the wall. Finite element modelling provides an efficient path forward because it simulates the cells as a thin-walled pressurized shells and can be used to quantitatively simulate the tensile forces and growth patterns with realistic cell and tissue geometries. The model also makes specific predictions about the location and type of cell wall heterogeneity that drive plant cell growth and how cell wall forces can be sensed by the cytoskeleton. This “Transitions to Excellence” project will develop a novel learning and research program that will broadly enable biologists and engineers to rigorously integrate finite element modelling, experimental validation, and model refinement. This approach and the single cell and organ systems that will be analyzed, have the potential to define generalizable morphogenesis “rules” that operate from the nanometer to centimeter scales to program functional traits. This research will serve as a framework to create more sophisticated models with sufficient detail to inform strategies to genetically engineer plant phenotypes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)的全部或部分资助的。在农作物物种中,该植物的建筑是产量的主要决定者,可以将其价值定义为可再生生物材料。细胞是建筑特征的组成部分,其生长是由巨大的内部压力驱动的,这会使细胞肿胀,并将坚硬的外细胞受到非常高的拉伸力。细胞壁的材料特性决定了各种空间尺度的生长模式。植物生物学的一个主要挑战是了解细胞内的遗传途径和蛋白质如何控制多糖的细胞外特性以决定生长模式。细胞内部的蛋白质机器需要解释细胞壁的信息,以便可以预测细胞大小和形状的变化。植物生长系统可以被认为是以可预测方式自组装的遗传编码的生物力学机器。缺乏将物理和材料科学概念与植物遗传学和细胞生物学的概念相结合的跨学科方法,从而阻碍了揭开潜在控制机制的进展。生物学家非常需要能够开发和充分表征植物开发的机械模型,该模型为理解植物形态发生的细胞机制以及该知识的下游应用以同意而提供了知识库。该项目中的研究和学习活动将播种新的方法来分析和操纵增长模式。工程和生物学领域成熟的专家和初级科学家将与植物细胞生物学广泛整合机械建模和微机械分析。研究团队将创建学习计划,以使这种交叉训练可以推广,并制造更具用户友好的模型,这些模型可以被研究和教育社区广泛采用。美国救援计划的资金在他的职业生涯的关键阶段为该研究者提供了支持。植物形态控制是一个多规模的综合过程,在该过程中,细胞骨架和细胞壁系统相互作用以产生适应性生长模式。但是,我们对细胞生长模式的确定方式以及它们如何扩展影响细胞,组织和器官水平表型的理解尚不清楚。关于均匀扩散生长的历史假设可能不正确,因为大多数细胞类型具有异质生长模式。此外,很难定量预测墙壁上的拉伸力模式,因为它们取决于turgor压力,多种类型的几何特征和壁的材料特性。有限元建模提供了有效的路径,因为它将细胞模拟为薄壁加压壳,可用于定量模拟具有逼真的细胞和组织几何形状的拉伸力和生长模式。该模型还对细胞壁异质性的位置和类型做出了特定的预测,这些细胞壁异质性驱动植物细胞的生长以及如何通过细胞骨架感测。这个“向卓越的过渡”项目将开发一个新颖的学习和研究计划,该计划将广泛地使生物学家和工程师严格整合有限元建模,实验验证和模型改进。这种方法以及将要分析的单细胞和器官系统,有可能定义从纳米到厘米到厘米尺度到程序功能性状的可推广形态发生的“规则”。这项研究将作为一个框架,以创建具有足够细节的更复杂模型,以告知策略,以一般设计植物表型。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Szymanski其他文献
Daniel Szymanski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Szymanski', 18)}}的其他基金
RESEARCH-PGR: A Systems Biology Approach to Enable Cotton Fiber Engineering
RESEARCH-PGR:实现棉纤维工程的系统生物学方法
- 批准号:
1951819 - 财政年份:2020
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
2018 Plant Cell Dynamics (PCD) Meeting; May 29-June 1, 2018; University of Wisconsin-Madison
2018植物细胞动力学(PCD)会议;
- 批准号:
1834879 - 财政年份:2018
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Experimental and Computational Approach to Discover Biomechanical Mechanisms of Leaf Epidermal Morphogenesis
合作研究:探索叶表皮形态发生生物力学机制的综合实验和计算方法
- 批准号:
1715544 - 财政年份:2017
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Conference: Plant Cell Dynamics 2017; May 30-June 2; Madison, WI
会议:植物细胞动力学2017;
- 批准号:
1738300 - 财政年份:2017
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
2015 Plant Cell Dynamics Conferenc; Madison, WI - June 16-19, 2015
2015植物细胞动力学会议;
- 批准号:
1539987 - 财政年份:2015
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Conference: 2014 Plant Cell Dynamics Meeting. June 4-7, Madison Wisconsin.
会议:2014植物细胞动力学会议。
- 批准号:
1442067 - 财政年份:2014
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Conference: 2013 Midwest Plant Cell Dynamics Meeting being held June 5-7, 2013 in Madison, WI
会议:2013 年中西部植物细胞动力学会议于 2013 年 6 月 5 日至 7 日在威斯康星州麦迪逊举行
- 批准号:
1339477 - 财政年份:2013
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Conference: Midwest Plant Cell Dynamics Meeting being held June 20-22, 2012 in Wisconsin, Madison
会议:中西部植物细胞动力学会议将于 2012 年 6 月 20 日至 22 日在威斯康星州麦迪逊市举行
- 批准号:
1238380 - 财政年份:2012
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Novel micromechanical and computational approaches to discover the mechanisms of symmetry breaking and polarized growth in dicot pavement cells
EAGER:协作研究:新的微机械和计算方法,用于发现双子叶植物路面细胞对称性破缺和极化生长的机制
- 批准号:
1249652 - 财政年份:2012
- 资助金额:
$ 74.99万 - 项目类别:
Continuing Grant
Novel Quantitative Proteomic Methods to Discover and Localize Endogenous Protein Complexes
发现和定位内源蛋白质复合物的新定量蛋白质组学方法
- 批准号:
1127027 - 财政年份:2011
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
相似国自然基金
创建靶向的功能化线粒体移植抗衰老体系ΔIL-2-Cargocyte@SOD2-Mito并系统性地揭示其治疗机制
- 批准号:82302380
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
包覆型石榴石氧载体原位创建及化学链制氢研究
- 批准号:22378387
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
水稻表观遗传重组自交系的创建与功能变异位点鉴定
- 批准号:32330019
- 批准年份:2023
- 资助金额:232 万元
- 项目类别:重点项目
叶气温差对马铃薯植株水分的响应规律及其推荐灌溉方法创建
- 批准号:32360536
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
脉冲释放微球吸入制剂的创建及其黏膜免疫增效机制研究
- 批准号:82341045
- 批准年份:2023
- 资助金额:100.00 万元
- 项目类别:专项项目
相似海外基金
Creating pH-sensitive self-healing concrete using sludge waste for sewers
利用下水道污泥废物制造 pH 敏感的自修复混凝土
- 批准号:
DP230100688 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Discovery Projects
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
EP/Y023250/1 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Research Grant
Creating a Path to Achieving Success and Sense of Belonging in Computer Science
创造一条在计算机科学领域取得成功和归属感的道路
- 批准号:
2322665 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Cooperative Agreement
EAGER: Creating a Composite EL Nino Record from the Lowland Neotropics
EAGER:创造低地新热带区综合厄尔尼诺记录
- 批准号:
2417794 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant