RINGS: Walk For Resiliency & Privacy: A Random Walk Framework for Learning at the Edge
RINGS:步行以增强弹性
基本信息
- 批准号:2148182
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Learning in Next Generation (NextG) wireless systems is expected to bring about a technological and societal revolution even bigger than that which data brought to early voice-centered systems. Learning will have to be performed on data predominantly originating at edge and user devices in order to support applications such as Internet of Things (IoT), federated learning, mobile healthcare, self-driving cars, and others. A growing body of research work has focused on engaging the edge in the learning process, which can be advantageous in terms of a better utilization of network resources, delay reduction, resiliency against cloud unavailability and catastrophic failures, and increased security and privacy. Present proposed solutions, however, predominantly suffer from having a critical centralized component, typically in the cloud, that organizes and aggregates the nodes’ computations. This rigid centralized infrastructure can inhibit the full potential of resiliency and privacy in NextG systems. By relaxing the centralized infrastructure, the proposed research aims to advance Random Walk learning algorithms as the basis of a unified framework for the joint design of distributed learning and networking, with resiliency and privacy being the overarching goal.In Random Walk learning, the model can be thought of as a “baton” that is updated and passed from one node (cloud, edge node, end-devices, etc.) in the network to one of its neighbors that is smartly chosen. This baton can be then passed to the cloud at a prescribed schedule and/or adaptively as part of the random walk, allowing thus a fluid architecture where centralization and full decentralization constitute two corner points. The proposed work will focus on major challenges and opportunities specific to the applicability of random walk learning in NextG, namely: (i) Adaptability to the heterogeneity of the data and the heterogeneity and dynamic nature of the network; (ii) Resiliency and graceful degradation in the face of failures via coding-theoretic redundancy methods; (iii) Model distribution across nodes and random walking snakes; and (iv) Privacy of the locally owned data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代(NextG)无线系统中的学习有望带来一场技术和社会革命,甚至比数据给早期以语音为中心的系统带来的革命还要大。学习必须对主要源自边缘和用户设备的数据进行,以支持物联网(IoT)、联合学习、移动的医疗保健、自动驾驶汽车等应用。越来越多的研究工作集中在让边缘参与学习过程,这在更好地利用网络资源、减少延迟、抵御云不可用和灾难性故障以及提高安全性和隐私方面都是有利的。然而,目前提出的解决方案主要受到具有关键的集中式组件(通常在云中)的影响,该组件组织和聚合节点的计算。这种严格的集中式基础设施可能会抑制NextG系统中弹性和隐私的全部潜力。通过放松集中式基础设施,拟议的研究旨在推进随机游走学习算法,作为分布式学习和网络联合设计的统一框架的基础,弹性和隐私是首要目标。在随机游走学习中,模型可以被认为是从一个节点(云,边缘节点,终端设备等)更新和传递的“指挥棒”。在网络中的一个邻居是聪明的选择。然后,这个接力棒可以按照规定的时间表和/或自适应地作为随机游走的一部分传递给云,从而允许一个流体架构,其中集中化和完全分散化构成两个角点。 拟议的工作将侧重于NextG中随机游走学习适用性的主要挑战和机遇,即:(i)对数据的异质性以及网络的异质性和动态性质的适应性;(ii)通过编码理论冗余方法面对故障时的弹性和优雅降级;(iii)跨节点和随机游动蛇的模型分布;(iv)在网络中的应用。及(iv)本地拥有数据的隐私。此奖项反映NSF的法定使命,并已被视为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Walk for Learning: A Random Walk Approach for Federated Learning From Heterogeneous Data
- DOI:10.1109/jsac.2023.3244250
- 发表时间:2022-06
- 期刊:
- 影响因子:16.4
- 作者:Ghadir Ayache;Venkat Dassari;S. E. Rouayheb
- 通讯作者:Ghadir Ayache;Venkat Dassari;S. E. Rouayheb
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salim El Rouayheb其他文献
Salim El Rouayheb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salim El Rouayheb', 18)}}的其他基金
SaTC: CORE: Medium: Collaborative: Secure Distributed Coded Computations for IoT: An Information Theoretic and Network Approach
SaTC:核心:媒介:协作:物联网的安全分布式编码计算:信息论和网络方法
- 批准号:
1801630 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research:Synchronization and Deduplication of Distributed Coded Data: Fundamental Limits and Algorithms
CIF:小型:协作研究:分布式编码数据的同步和重复数据删除:基本限制和算法
- 批准号:
1817634 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER:Information Theoretic Methods for Private Information Retrieval and Search in Distributed Storage Systems
职业:分布式存储系统中隐私信息检索和搜索的信息论方法
- 批准号:
1817635 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER:Information Theoretic Methods for Private Information Retrieval and Search in Distributed Storage Systems
职业:分布式存储系统中隐私信息检索和搜索的信息论方法
- 批准号:
1652867 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research:Synchronization and Deduplication of Distributed Coded Data: Fundamental Limits and Algorithms
CIF:小型:协作研究:分布式编码数据的同步和重复数据删除:基本限制和算法
- 批准号:
1526962 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
WalK(S221P)突变促进金黄色葡萄球菌荚膜产生的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
间苯三酚类天然产物Callistrilone E (CSE)通过激活WalK发挥抗菌作用的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:
硫双二氯酚靶向WalK和PyrH蛋白酶抑制革兰阳性细菌生长及生物被膜形成的机制研究
- 批准号:82172283
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
间苯三酚类天然产物Callistrilone E(CSE)通过激活WalK发挥抗菌作用的机制研究
- 批准号:82173859
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
硫双二氯酚靶向WalK和PyrH蛋白酶抑制金黄色葡萄球菌生长及生物被膜形成的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
WalK组氨酸激酶抑制剂的优化、抗细菌生物膜作用及机制
- 批准号:81573268
- 批准年份:2015
- 资助金额:55.0 万元
- 项目类别:面上项目
以肺炎链球菌WalK酶HATPase_c结构域为靶点的新型咪唑类抗菌药物的合成及其抗菌效应研究
- 批准号:81460317
- 批准年份:2014
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Research on Infinity Natural Walk
无限自然行走研究
- 批准号:
23H01381 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CyberHeels – AI powered cyber security education platform and bootcamps for women’s safety. 'Step into security: empower your walk with CyberHeels' - using wearable tech (road map) and cyber security education to improve safety for women.
CyberHeels — 人工智能驱动的网络安全教育平台和女性安全训练营。
- 批准号:
10078031 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Collaborative R&D
CAREER: An Algorithm and System Co-Designed Framework for Graph Sampling and Random Walk on GPUs
职业生涯:用于 GPU 上的图形采样和随机游走的算法和系统协同设计框架
- 批准号:
2326141 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Lighting the Way to a Healthy Nation - Optical 'X-rays' for Walk Through Diagnosis & Therapy
照亮健康国家之路 - 用于步行诊断的光学“X 射线”
- 批准号:
EP/T020997/2 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Research Grant
A walk on the wild side: understanding disease resistance across plants
野外行走:了解植物的抗病性
- 批准号:
FL230100030 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Australian Laureate Fellowships
Walking the walk in smaller cities: A collaborative approach to enhancing active transportation and public space
在小城市中行走:增强主动交通和公共空间的协作方法
- 批准号:
477120 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Miscellaneous Programs
Smart Walk: A culturally tailored smartphone-delivered physical activity intervention to reduce cardiometabolic disease risk among African American women
Smart Walk:一种根据文化定制的智能手机提供的身体活动干预措施,以降低非裔美国女性的心脏代谢疾病风险
- 批准号:
10639951 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Millimeter-wave 3D imaging sensor for walk-through security checks
用于步行安检的毫米波 3D 成像传感器
- 批准号:
23H01412 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Walk this Way: Physical Activity and Walking Biomechanics Lead to Early Knee OA Symptoms and Ultrasound-Detected Structural Pathology after ACL Reconstruction
以此方式行走:体力活动和行走生物力学导致 ACL 重建后早期膝关节 OA 症状和超声检测的结构病理学
- 批准号:
10506932 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
How people decide on the best path to walk
人们如何决定最佳行走路径
- 批准号:
573642-2022 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




