RINGS: Scalable and Resilient Networked Learning Systems

RINGS:可扩展且有弹性的网络学习系统

基本信息

  • 批准号:
    2148224
  • 负责人:
  • 金额:
    $ 63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Next-generation learning systems enabling applications ranging from healthcare, energy, banking, augmented/virtual reality and car/robot navigation, will be privacy-driven, distributed and large-scale, resulting in substantially increased exposure to network congestion and failures. A typical scenario is one where a substantial number of entities (clients, organizations, communities thereof) participate in a learning task; each of these entities owns, has access to, or generates part of an overall data set which would be impractical or undesirable to gather at a central location. While the entities benefit from a collaboration, especially in settings where the amount of local data is relatively small and thus the ability of an entity to learn a model on its own is limited, such a collaboration requires major network resources. This research project centers on developing new, as well as expanding traditional, engineering principles for the design of resilient and scalable networked learning systems. To this end, the project investigates interrelated themes spanning the development of theoretical underpinnings, network architecture, applications and protocol design. The broader impacts offer advances in education, enhancing diversity, engaging the community and industry, and disseminating results to a wider public.The project will initially focus on Federated Learning (FL) frameworks and, in Theme 1, study how to achieve resilience to uncertainty in FL systems experiencing intermittent client availability and time-varying network capacity. This leads to a novel approach to FL which effectively "learns how to learn" in an uncertain/resource-constrained environment. Theme 2 addresses scalability challenges encountered in large-scale FL by relying on clustering of "exchangeable" clients. This moves from client-centric to an efficient cluster-centric system management by leveraging multicast-based estimation/tracking of cluster populations, combined with probabilistic scheduling of clients in the clusters. This offers new avenues to scalability and resiliency as well as potential privacy enhancements. Theme 3 builds on ideas from rate-distortion theory and scalable video coding, and explores the use of scalable/layered (learned) model compression as a basis for adaptive congestion-aware FL. A key idea here is recognizing that aggressive compression leads to faster delivery, which motivates the search for a tradeoff sweet spot where FL performs more updates but with poorer (noisier) models. This research exemplifies research synergies of ideas from information, queueing and learning theory towards achieving resilience and adaptability. The project also pursues the design and use of overlay Data Aggregation Networks which exploit the aggregative character of model updates via in-network update aggregation and associated data compression. This can be viewed as the dual of Content Delivery Network overlays which are a core element managing the cost and performance in current network infrastructure. Theme 4 recognizes that at the base of FL applications is client participation and thus brings into focus the joint incentivization of clients and management of limited resources in uncertain environments. Overall, the proposed research focuses on new forms of network intelligence and adaptability, aiming to address scalability through device-to-edge-to-cloud continuum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代学习系统支持医疗保健、能源、银行、增强/虚拟现实和汽车/机器人导航等应用,将是隐私驱动的、分布式的和大规模的,从而大大增加了网络拥塞和故障的风险。一个典型的场景是大量的实体(客户端,组织,社区)参与学习任务;这些实体中的每一个都拥有,可以访问,或生成一个整体数据集的一部分,这将是不切实际的或不可取的收集在一个中央位置。虽然实体从协作中受益,特别是在本地数据量相对较小并且因此实体自己学习模型的能力有限的情况下,但是这种协作需要主要的网络资源。这个研究项目的中心是开发新的,以及扩展传统的,弹性和可扩展的网络学习系统的设计工程原理。为此,该项目研究了跨越理论基础,网络架构,应用程序和协议设计的发展的相互关联的主题。更广泛的影响提供了教育的进步,提高多样性,参与社区和行业,并传播结果给更广泛的public.The项目将首先集中在联邦学习(FL)框架,并在主题1,研究如何实现弹性的不确定性在FL系统经历间歇性的客户端可用性和随时间变化的网络容量。这导致了一种新的方法,FL有效地“学习如何学习”在一个不确定/资源受限的环境。主题2解决了大规模FL中遇到的可扩展性挑战,依靠集群的“可交换”客户端。这通过利用集群人口的基于多播的估计/跟踪,结合集群中客户端的概率调度,从以客户端为中心的系统管理转变为以集群为中心的高效系统管理。这为可扩展性和弹性以及潜在的隐私增强提供了新的途径。主题3建立在率失真理论和可伸缩视频编码的思想基础上,并探讨了使用可伸缩/分层(学习)模型压缩作为自适应感知FL的基础。这里的一个关键思想是认识到积极的压缩会导致更快的交付,这促使人们寻找一个折衷的最佳点,FL执行更多的更新,但模型较差(噪声较大)。这项研究证实了从信息,学习和学习理论的想法对实现弹性和适应性的研究协同作用。该项目还追求覆盖数据聚合网络的设计和使用,该网络通过网络内更新聚合和相关数据压缩来利用模型更新的聚合特性。这可以被视为内容交付网络覆盖的双重,内容交付网络覆盖是管理当前网络基础设施中的成本和性能的核心元素。主题4认识到,在FL应用的基础是客户的参与,从而使重点客户和有限资源的管理在不确定的环境中的联合激励。总体而言,拟议的研究重点是新形式的网络智能和适应性,旨在通过设备到边缘到云的连续统一体来解决可扩展性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Network Adaptive Federated Learning: Congestion and Lossy Compression
MOHAWK: Mobility and Heterogeneity-Aware Dynamic Community Selection for Hierarchical Federated Learning
Federated Learning Under Intermittent Client Availability and Time-Varying Communication Constraints
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gustavo de Veciana其他文献

Overlay subgroup communication in large-scale multicast applications
  • DOI:
    10.1016/j.comcom.2005.07.005
  • 发表时间:
    2006-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jangwon Lee;Gustavo de Veciana
  • 通讯作者:
    Gustavo de Veciana
Poly-symmetry in processor-sharing systems
  • DOI:
    10.1007/s11134-017-9525-2
  • 发表时间:
    2017-04-22
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Thomas Bonald;Céline Comte;Virag Shah;Gustavo de Veciana
  • 通讯作者:
    Gustavo de Veciana
Utility maximization for asynchronous streaming of bufferable information flows
  • DOI:
    10.1016/j.sysconle.2023.105455
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vinay Joseph;Gustavo de Veciana
  • 通讯作者:
    Gustavo de Veciana
Aggregating Multicast Demands on Virtual Path Trees
  • DOI:
    10.1023/a:1016635515688
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Michael Montgomery;Gustavo de Veciana
  • 通讯作者:
    Gustavo de Veciana
Asymptotic independence of servers’ activity in queueing systems with limited resource pooling
  • DOI:
    10.1007/s11134-016-9475-0
  • 发表时间:
    2016-01-29
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Virag Shah;Gustavo de Veciana
  • 通讯作者:
    Gustavo de Veciana

Gustavo de Veciana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gustavo de Veciana', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
  • 批准号:
    2212202
  • 财政年份:
    2022
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Online Safe Reinforcement Learning for Wireless Resource Allocation
CNS 核心:小型:用于无线资源分配的在线安全强化学习
  • 批准号:
    1910112
  • 财政年份:
    2019
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Visibility and Interactive Information Sharing in Collaborative Sensing Systems
协作传感系统中的可见性和交互式信息共享
  • 批准号:
    1809327
  • 财政年份:
    2018
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Densification of Wireless Networks
合作研究:无线网络的极度致密化
  • 批准号:
    1343383
  • 财政年份:
    2014
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Supporting unstructured peer-to-peer social networking
NetS:小型:协作研究:支持非结构化点对点社交网络
  • 批准号:
    0915928
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
NeTS:Small:Dynamic Coupling and Flow-Level Performance in Data Networks: From Theory to Practice
NeTS:Small:数据网络中的动态耦合和流级性能:从理论到实践
  • 批准号:
    0917067
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
NeTS-WN: Network Architecture and Abstractions for Environment and Traffic Aware System-Level Optimization of Wireless Systems
NeTS-WN:无线系统环境和流量感知系统级优化的网络架构和抽象
  • 批准号:
    0721532
  • 财政年份:
    2007
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
CSR-EHS: Novel Mobile and Distributed Embedded Systems for Pervasive Computing Applications
CSR-EHS:用于普适计算应用的新型移动和分布式嵌入式系统
  • 批准号:
    0509355
  • 财政年份:
    2005
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
Integrated Sensing: Network Support for Distributed Sensing Applications
集成传感:分布式传感应用的网络支持
  • 批准号:
    0225448
  • 财政年份:
    2002
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
CAREER: Analysis and Design of Hierarchical Source Routing & Embedded ATM Networks
职业:分层源路由的分析和设计
  • 批准号:
    9624230
  • 财政年份:
    1996
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
  • 批准号:
    2340267
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
  • 批准号:
    2339509
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
AllyGateway: a secure, scalable, fast, resilient and intelligent USSD to HTTP proxy, enabling mobile banking in rural locations.
AllyGateway:安全、可扩展、快速、弹性和智能的 USSD 到 HTTP 代理,支持农村地区的移动银行业务。
  • 批准号:
    10065822
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Collaborative R&D
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
  • 批准号:
    2225161
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: RI: Towards Scalable, Resilient and Robust Foraging with Heterogeneous Robot Swarms
合作研究:CISE-MSI:DP:RI:利用异构机器人群实现可扩展、有弹性和稳健的觅食
  • 批准号:
    2318682
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: RI: Towards Scalable, Resilient and Robust Foraging with Heterogeneous Robot Swarms
合作研究:CISE-MSI:DP:RI:利用异构机器人群实现可扩展、有弹性和稳健的觅食
  • 批准号:
    2318683
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
CAREER: Resilient and Scalable Framework for Control of Mutli-agent Systems: Ensemble Control of Network Motifs
职业:用于控制多智能体系统的弹性和可扩展框架:网络基序的集成控制
  • 批准号:
    2336842
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
  • 批准号:
    2225160
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Towards Scalable, Resilient, and Interpretable Approaches for Machine Learning based Malware Detectors
为基于机器学习的恶意软件检测器提供可扩展、有弹性和可解释的方法
  • 批准号:
    RGPIN-2020-04738
  • 财政年份:
    2022
  • 资助金额:
    $ 63万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Network Traffic Identification with Scalable and Resilient Machine Learning
通过可扩展且有弹性的机器学习进行动态网络流量识别
  • 批准号:
    576922-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 63万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了