CNS Core: Small: Online Safe Reinforcement Learning for Wireless Resource Allocation
CNS 核心:小型:用于无线资源分配的在线安全强化学习
基本信息
- 批准号:1910112
- 负责人:
- 金额:$ 49.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Next generation wireless networks are being engineered to meet a complex mix of application requirements, from traditional mobile broadband (e.g., web browsing, video streaming) to new emerging applications (e.g., augmented reality, self-driving cars, industrial automation, robotics) with heterogeneous much more stringent reliability-latency requirements. The ability to support these requirements drives the potential to deliver the new business models and new revenue streams that would enable deployments of the new technology. Thus, wireless scheduling and resource allocation will take center stage in terms of enabling technologies for such networks. Meanwhile reinforcement learning (RL) using deep networks has emerged as a powerful framework to devise polices that optimize complex systems' performance (including wireless systems); however, these usually do not come with any formal guarantees. The central thesis of this research is that RL-based resource allocation policies without operational guarantees, e.g., throughput-optimality/stability, are unlikely to be accepted and/or deployed, thus a key requirement to make these techniques usable, is to develop approaches which ensure safety guarantees. The research advances the state-of-the-art in safe reinforcement learning, with specific applications to wireless systems, but also is expected to benefit other application domains as well as society more broadly, through planned efforts in education, innovation, achieving diversity, engaging the community and industry, and disseminating results to a wider public.This research centers on the development and analysis of a safe reinforcement learning (Safe-RL) framework, which optimizes rewards over short-time scales, and also provides theoretically strong long-term throughput-optimality guarantees for state-of-art wireless scheduling algorithms. The key underlying observation is that many of today's scheduling algorithms derive their performance guarantees from Lyapunov analysis. The project leverages the innovative concept of guardrails -- constraints on the state-dependent actions of Safe-RL -- that guarantee that the wireless system's Lyapunov evolution stay within a bounded perturbation of classical algorithms. This guarantee, in turn, ensures that Safe-RL has safety/stability properties of state-of-the-art schedulers, while leveraging RL to realize complex performance tradeoffs. The research consists of three inter-related thrusts. Thrust 1 develops the foundations and representations for safe-RL at the core of this project, along with a theoretical basis for safety guarantees and new classes of efficient learning for wireless system network abstractions. Thrust 2 focuses on the application of safe-RL theory to wireless resource allocation, including addressing challenges associated with joint scheduling of real-time and broadband traffic, learning and exploiting traffic patterns, and an exploration of the degree to which a policy hits guardrails as an indication of system anomalies or need for re-optimization. Thrust 3 centers on the challenging but necessary task of validating the safe-RL framework leveraging an industrial strength multi-cell simulator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代无线网络的设计是为了满足复杂的应用需求组合,从传统的移动宽带(例如,网页浏览、视频流)到新兴的应用(例如,增强现实、自动驾驶汽车、工业自动化、机器人),这些应用具有更严格的可靠性和延迟要求。支持这些需求的能力推动了交付新的业务模型和新的收入流的潜力,这些将支持新技术的部署。因此,无线调度和资源分配将成为这类网络的核心技术。与此同时,使用深度网络的强化学习(RL)已经成为一个强大的框架,用于设计优化复杂系统(包括无线系统)性能的策略;然而,这些通常没有任何正式的保证。本研究的中心论点是,没有操作保证(例如,吞吐量最优性/稳定性)的基于rl的资源分配策略不太可能被接受和/或部署,因此,使这些技术可用的关键要求是开发确保安全保证的方法。该研究推进了安全强化学习的最新技术,具体应用于无线系统,但也有望通过在教育、创新、实现多样性、参与社区和行业以及向更广泛的公众传播结果方面的计划努力,更广泛地造福于其他应用领域和社会。本研究以开发和分析安全强化学习(safe - rl)框架为中心,该框架在短时间尺度上优化奖励,并为最先进的无线调度算法提供理论上强大的长期吞吐量最优性保证。关键的潜在观察是,今天的许多调度算法从Lyapunov分析中获得性能保证。该项目利用了护栏的创新概念——对Safe-RL状态依赖行为的约束——确保无线系统的Lyapunov进化保持在经典算法的有界扰动范围内。这种保证反过来又确保了Safe-RL具有最先进调度器的安全/稳定特性,同时利用RL实现复杂的性能权衡。这项研究包括三个相互关联的重点。推力1作为该项目的核心,开发了安全强化学习的基础和表示,以及安全保证的理论基础和无线系统网络抽象的高效学习的新类别。推力2侧重于安全rl理论在无线资源分配中的应用,包括解决与实时和宽带流量联合调度相关的挑战,学习和利用流量模式,以及探索策略撞击护栏的程度,作为系统异常或需要重新优化的指示。推力3的重点是利用工业强度的多单元模拟器验证安全rl框架,这是一项具有挑战性但必要的任务。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constrained Network Slicing Games: Achieving Service Guarantees and Network Efficiency
- DOI:10.1109/tnet.2023.3262810
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Jiaxiao Zheng;Albert Banchs;G. Veciana
- 通讯作者:Jiaxiao Zheng;Albert Banchs;G. Veciana
MmWave Codebook Selection in Rapidly-Varying Channels via Multinomial Thompson Sampling
- DOI:10.1145/3466772.3467044
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Yi Zhang;S. Basu;S. Shakkottai;R. Heath
- 通讯作者:Yi Zhang;S. Basu;S. Shakkottai;R. Heath
Distributed Reinforcement Learning Based Delay Sensitive Decentralized Resource Scheduling
- DOI:10.23919/wiopt58741.2023.10349880
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Geetha Chandrasekaran;G. Veciana
- 通讯作者:Geetha Chandrasekaran;G. Veciana
Meta-Scheduling for the Wireless Downlink Through Learning With Bandit Feedback
通过学习强盗反馈进行无线下行链路元调度
- DOI:10.1109/tnet.2021.3117783
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Song, Jianhan;de Veciana, Gustavo;Shakkottai, Sanjay
- 通讯作者:Shakkottai, Sanjay
Auto-Tuning for Cellular Scheduling Through Bandit-Learning and Low-Dimensional Clustering
通过强盗学习和低维聚类自动调整蜂窝调度
- DOI:10.1109/tnet.2021.3077455
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tariq, Isfar;Sen, Rajat;Novlan, Thomas;Akoum, Salam;Majmundar, Milap;de Veciana, Gustavo;Shakkottai, Sanjay
- 通讯作者:Shakkottai, Sanjay
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo de Veciana其他文献
Overlay subgroup communication in large-scale multicast applications
- DOI:
10.1016/j.comcom.2005.07.005 - 发表时间:
2006-05-15 - 期刊:
- 影响因子:
- 作者:
Jangwon Lee;Gustavo de Veciana - 通讯作者:
Gustavo de Veciana
Poly-symmetry in processor-sharing systems
- DOI:
10.1007/s11134-017-9525-2 - 发表时间:
2017-04-22 - 期刊:
- 影响因子:0.700
- 作者:
Thomas Bonald;Céline Comte;Virag Shah;Gustavo de Veciana - 通讯作者:
Gustavo de Veciana
Utility maximization for asynchronous streaming of bufferable information flows
- DOI:
10.1016/j.sysconle.2023.105455 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:
- 作者:
Vinay Joseph;Gustavo de Veciana - 通讯作者:
Gustavo de Veciana
Aggregating Multicast Demands on Virtual Path Trees
- DOI:
10.1023/a:1016635515688 - 发表时间:
2001-01-01 - 期刊:
- 影响因子:2.300
- 作者:
Michael Montgomery;Gustavo de Veciana - 通讯作者:
Gustavo de Veciana
Asymptotic independence of servers’ activity in queueing systems with limited resource pooling
- DOI:
10.1007/s11134-016-9475-0 - 发表时间:
2016-01-29 - 期刊:
- 影响因子:0.700
- 作者:
Virag Shah;Gustavo de Veciana - 通讯作者:
Gustavo de Veciana
Gustavo de Veciana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo de Veciana', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212202 - 财政年份:2022
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
RINGS: Scalable and Resilient Networked Learning Systems
RINGS:可扩展且有弹性的网络学习系统
- 批准号:
2148224 - 财政年份:2022
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
Visibility and Interactive Information Sharing in Collaborative Sensing Systems
协作传感系统中的可见性和交互式信息共享
- 批准号:
1809327 - 财政年份:2018
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Densification of Wireless Networks
合作研究:无线网络的极度致密化
- 批准号:
1343383 - 财政年份:2014
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Supporting unstructured peer-to-peer social networking
NetS:小型:协作研究:支持非结构化点对点社交网络
- 批准号:
0915928 - 财政年份:2009
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
NeTS:Small:Dynamic Coupling and Flow-Level Performance in Data Networks: From Theory to Practice
NeTS:Small:数据网络中的动态耦合和流级性能:从理论到实践
- 批准号:
0917067 - 财政年份:2009
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
NeTS-WN: Network Architecture and Abstractions for Environment and Traffic Aware System-Level Optimization of Wireless Systems
NeTS-WN:无线系统环境和流量感知系统级优化的网络架构和抽象
- 批准号:
0721532 - 财政年份:2007
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CSR-EHS: Novel Mobile and Distributed Embedded Systems for Pervasive Computing Applications
CSR-EHS:用于普适计算应用的新型移动和分布式嵌入式系统
- 批准号:
0509355 - 财政年份:2005
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
Integrated Sensing: Network Support for Distributed Sensing Applications
集成传感:分布式传感应用的网络支持
- 批准号:
0225448 - 财政年份:2002
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CAREER: Analysis and Design of Hierarchical Source Routing & Embedded ATM Networks
职业:分层源路由的分析和设计
- 批准号:
9624230 - 财政年份:1996
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
- 批准号:
2322919 - 财政年份:2024
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
- 批准号:
2343469 - 财政年份:2024
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
- 批准号:
2317698 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
- 批准号:
2233894 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
- 批准号:
2228028 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CNS Core: Small: Redesigning I/O Across Heterogeneous Systems
CNS 核心:小型:跨异构系统重新设计 I/O
- 批准号:
2231724 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant














{{item.name}}会员




