Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
基本信息
- 批准号:2148646
- 负责人:
- 金额:$ 40.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Materials, especially metals, can be deformed more easily when exposed to high frequency elastic waves. Such phenomenon is called acoustoplasticity and has been used in several applications, such as metal forming, extrusion, welding, flip-chip bonding, and ultrasonic additive manufacturing. Despite its widespread use, these processes are still at a “trial and error” stage due to the lack of a clear understanding of the underlying mechanisms. This award supports fundamental research to unravel the deformation processes that drive acoustoplasticity through a combined computational and experimental approach, from the atomistic up to the microstructural scale. The knowledge gained from this award can improve vibration/ultrasonic assisted manufacturing methods, especially ultrasonic additive manufacturing, which has the potential for on-demand, in-space manufacturing. This award will support cross-cutting research between mechanics, high performance computing, data science, material characterization, and testing. Student recruitment, including for summer undergraduate research opportunities, will focus on underrepresented minorities. Additionally, hands-on computational and experimental workshops will target K-12 school children and teachers.The mechanisms behind acoustoplasticity in metals are not fully understood because: (1) acoustic excitation occurs in the macroscale, but its effects can be spread over orders of magnitude in the spatio-temporal scale; (2) single-scale models smear out the mechanisms spread over multiple scales and cannot address the full complexity; and (3) probing the acoustic-affected dislocation plasticity is challenging due to the fast time scale of the events. This research will fill these knowledge gaps by combining multiscale simulations, time resolved nonlinear waves, and microscopy. The complex dynamics of plastic deformation under ultrasonic vibrations will be characterized through concurrent atomistic-continuum simulations. The in-situ, time-resolved experiments will be used to capture the microstructural evolution under ultrasonic vibrations, e.g., with the use of scanning electron microscopy and electron back scatter diffraction. Finally, a mechanism-based parameter will be calibrated to bridge the simulations and experiments across multiple spatio-temporal scales for a multiscale understanding of acoustoplasticity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料,特别是金属,在暴露于高频弹性波时更容易变形。这种现象被称为声塑性,并且已经用于若干应用中,例如金属成形、挤出、焊接、倒装芯片接合和超声增材制造。尽管其被广泛使用,但由于缺乏对基本机制的明确理解,这些过程仍处于"试错"阶段。该奖项支持基础研究,通过计算和实验相结合的方法,从原子到微观结构尺度,揭示驱动声塑性的变形过程。从该奖项中获得的知识可以改进振动/超声辅助制造方法,特别是超声增材制造,它具有按需空间制造的潜力。该奖项将支持力学,高性能计算,数据科学,材料表征和测试之间的交叉研究。学生招聘,包括夏季本科研究机会,将集中在代表性不足的少数民族。此外,动手计算和实验工作坊将针对K-12学校的儿童和教师。金属声塑性背后的机制尚未完全理解,因为:(1)声激发发生在宏观尺度上,但其影响可以在时空尺度上传播几个数量级;(2)单尺度模型模糊了分布在多个尺度上的机制,并且不能解决全部复杂性;以及(3)由于事件的时间尺度很快,探测声学影响的位错可塑性具有挑战性。这项研究将通过结合多尺度模拟,时间分辨非线性波和显微镜来填补这些知识空白。超声振动下的塑性变形的复杂动力学将通过并发原子连续模拟的特点。原位时间分辨实验将用于捕获超声振动下的微观结构演变,例如,使用扫描电子显微镜和电子背散射衍射。最后,一个基于机制的参数将被校准,以跨越多个时空尺度的模拟和实验的多尺度声塑性的理解。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunil Kishore Chakrapani其他文献
A novel multi-fidelity Gaussian process regression approach for defect characterization in motion-induced eddy current testing
一种用于运动感应涡流检测中缺陷表征的新型多保真度高斯过程回归方法
- DOI:
10.1016/j.ndteint.2024.103274 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.500
- 作者:
Xuhui Huang;Zi Li;Lei Peng;Yufei Chu;Zebadiah Miles;Sunil Kishore Chakrapani;Ming Han;Anish Poudel;Yiming Deng - 通讯作者:
Yiming Deng
Topological data analysis of coda waves to classify microstructural variability
尾波拓扑数据分析用于微结构变异分类
- DOI:
10.1016/j.ndteint.2025.103437 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:4.500
- 作者:
Subal Sharma;Firas A. Khasawneh;James Wall;Thiago Seuaciuc-Osorio;Sunil Kishore Chakrapani - 通讯作者:
Sunil Kishore Chakrapani
Nondestructive evaluation of helicopter rotor blades using guided Lamb modes
- DOI:
10.1016/j.ultras.2013.10.011 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:
- 作者:
Sunil Kishore Chakrapani;Daniel Barnard;Vinay Dayal - 通讯作者:
Vinay Dayal
Hybrid multi-modal NDE sensing system for in-motion detection and localization of rolling contact fatigue damage in rails
用于轨道滚动接触疲劳损伤的运动检测和定位的混合多模态无损检测传感系统
- DOI:
10.1016/j.ndteint.2024.103209 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:4.500
- 作者:
Zebadiah Miles;Zi Li;Lei Peng;Yufei Chu;Takuma Tomizawa;Farzia Karim;Bruce Maxfield;Ming Han;Lalita Udpa;Anish Poudel;Sunil Kishore Chakrapani;Yiming Deng - 通讯作者:
Yiming Deng
Sunil Kishore Chakrapani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多模态语义与视觉协同的情景式动漫人机创作研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
通专模型协同的多模态理解与生成关键技术研究
- 批准号:Z25F020037
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
交叉口新型混合交通流交互机理解析及协同优化设计研究
- 批准号:52372304
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多源有机固废高蒸汽参数协同焚烧的氯腐蚀机理解析与调控研究
- 批准号:52370134
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于边云协同的机场旅客行为理解与预测关键技术研究
- 批准号:U2133211
- 批准年份:2021
- 资助金额:208 万元
- 项目类别:重点项目
多元特征协同的列车车体能耗机理解析及优化设计研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向弱标注视觉理解的语义一致性表示多源协同学习研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
复杂环境下陆空无人系统协同多模态认知和定位建图方法研究
- 批准号:62003039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于跨媒体语义协同理解的农业知识演化与生成研究
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
多源视觉信息协同学习的手语理解研究
- 批准号:19ZR1419200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant