Attacking Networks of Tax Evasion: Theory and Evidence.

攻击逃税网络:理论和证据。

基本信息

  • 批准号:
    2149432
  • 负责人:
  • 金额:
    $ 36.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Ability to raise sufficient tax revenues efficiently and equitably to fund public services is one of the central challenges in economic development. This problem arises partly because of inability to create the capacity to enforce taxes effectively, thus leading to increased tax evasion. Reducing tax evasion requires a detailed understanding of the drivers of tax evasion and the optimal allocation of scarce tax enforcement resources. This research combines new theory and other innovative research methodologies to provide new insights into tax evasion by firms, the strength of enforcement spillovers through production networks, and how best to target enforcement activities. Working in partnership with tax authority, the project will help to increase the capacity to reduce tax evasion and to generate and use evidence on policies’ impacts. The results of this research project will inform policies to improve tax administration in the US to make it fair, efficient, reduce the deficit, and improve the allocation of resources. The lessons from this research can then serve as evidence to inform decisions in other countries. This project has two parts. In the first part extends the canonical model of tax evasion: firms make reports of their sales to, and purchases from, other firms in a production network, creating reporting spillovers. We derive the optimal targeting rules the government should use to minimize total tax evasion. The second part of the project leverages rich administrative tax return data on tax liabilities and production networks to perform two RCTs in collaboration with tax administrations. The first experiment will randomly deploy electronic invoicing and desk audits focused on discrepancies between trading partners' reports to learn the strength of their direct effects on targeted firms and their indirect effects on targeted firms' suppliers and clients. The project then takes these estimates and use them to calibrate the model and the second experiment tests the model’s optimal targeting rule against the status quo and random targeting. The results of this research project will inform policies to improve tax administration in the US to make it fair, efficient, reduce the deficit, and improve the allocation of resources. The lessons from this research can then serve as evidence to inform decisions in other countries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能否有效和公平地筹集足够的税收,为公共服务提供资金,是经济发展的核心挑战之一。 出现这一问题的部分原因是无法建立有效征税的能力,从而导致逃税现象增加。 减少逃税需要详细了解逃税的驱动因素,并优化配置稀缺的税收执法资源。这项研究结合了新的理论和其他创新的研究方法,为企业逃税,通过生产网络的执法溢出效应的强度以及如何最好地针对执法活动提供了新的见解。该项目将与税务当局合作,帮助提高减少逃税以及生成和使用政策影响证据的能力。该研究项目的结果将为改善美国税收管理的政策提供信息,使其公平,高效,减少赤字,改善资源配置。这项研究的经验教训可以作为证据,为其他国家的决策提供信息。 这个项目有两个部分。 在第一部分中,扩展了逃税的规范模型:公司报告他们的销售,并从其他公司在生产网络中购买,创造报告溢出。我们得出的最佳目标规则,政府应该使用,以尽量减少总逃税。该项目的第二部分利用关于纳税义务和生产网络的丰富的行政纳税申报数据,与税务部门合作进行两项RCT。 第一个实验将随机部署电子发票和桌面审计,重点是贸易伙伴报告之间的差异,以了解其对目标公司的直接影响以及对目标公司的供应商和客户的间接影响。然后,该项目采取这些估计,并使用它们来校准模型,第二个实验测试模型的最佳目标规则对现状和随机目标。该研究项目的结果将为改善美国税收管理的政策提供信息,使其公平,高效,减少赤字,改善资源配置。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Best其他文献

Can you do good and do well?: exploring HCI careers for societal impact
你能做好事并做得很好吗?:探索 HCI 职业以产生社会影响
Financing Social Policy in the Presence of Informality
非正规性下的社会政策融资
  • DOI:
    10.2139/ssrn.2051172
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Ahmad;Michael Best
  • 通讯作者:
    Michael Best
Combatiendo la evasión fiscal e incrementando la transparencia financiera en tiempos del COVID-19: El caso de Paraguay
COVID-19:巴拉圭埃尔卡索
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gastón Pierri;Michael Best;R. Blanco;José Monreale
  • 通讯作者:
    José Monreale
Interest Rates, Debt and Intertemporal Allocation: Evidence from Notched Mortgage Contracts in the United Kingdom
利率、债务和跨期分配:来自英国缺口抵押贷款合同的证据
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Best;J. Cloyne;E. Ilzetzki;H. Kleven
  • 通讯作者:
    H. Kleven
Complementarities in Labor Supply
劳动力供给的互补性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aletheia Donald;Florian Grosset;Jmp;Eric Verhoogen;Kiki Pop;Supreet Kaur;Livia Alfonsi;Michael Best;Sandy Black;Laura Boudreau;Hannah Farkas;Rob Garlick;Louise Guillouet;Suresh Naidu;Anna Papp;Tommaso Porzio;Jeff Shrader;Jack Willis;Krzysztof Zaremba
  • 通讯作者:
    Krzysztof Zaremba

Michael Best的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Best', 18)}}的其他基金

New Chemical Tools for Advancing Lipid Metabolic Labeling
促进脂质代谢标记的新化学工具
  • 批准号:
    2310263
  • 财政年份:
    2023
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
Citizen Scrutiny and Government Efforts to Fight Corruption
公民监督和政府反腐败努力
  • 批准号:
    2049832
  • 财政年份:
    2021
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research in Economics: The Consequences of Welfare Reform: A Case Study in Michigan
经济学博士论文研究:福利改革的后果:密歇根州的案例研究
  • 批准号:
    2018387
  • 财政年份:
    2020
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
REU Site: Advanced Chemistries for Energy and Sensing Applications at the University of Tennessee
REU 网站:田纳西大学能源和传感应用先进化学
  • 批准号:
    1852160
  • 财政年份:
    2019
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
Unemployment Insurance Schemes in Developing Countries
发展中国家的失业保险计划
  • 批准号:
    1757105
  • 财政年份:
    2018
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Continuing Grant
Synthetic Lipid Switches for Controlling Liposome Assembly and Release
用于控制脂质体组装和释放的合成脂质开关
  • 批准号:
    1807689
  • 财政年份:
    2018
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Continuing Grant
REU Site: Advanced Materials for Energy and Sensing Applications at the University of Tennessee
REU 网站:田纳西大学能源和传感应用先进材料
  • 批准号:
    1560033
  • 财政年份:
    2016
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
REU Site: Advanced Materials for Energy and Sensing Applications at the University of Tennessee
REU 网站:田纳西大学能源和传感应用先进材料
  • 批准号:
    1262767
  • 财政年份:
    2013
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
CAREER: Chemical Approaches to the Investigation of Protein-Lipid Binding
职业:研究蛋白质-脂质结合的化学方法
  • 批准号:
    0954297
  • 财政年份:
    2010
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Continuing Grant
User Centered Design and International Development: Participant Support held on April 28, 2007 in San Jose, CA
以用户为中心的设计和国际开发:参与者支持于 2007 年 4 月 28 日在加利福尼亚州圣何塞举行
  • 批准号:
    0722589
  • 财政年份:
    2007
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant

相似国自然基金

军民两用即兴网(Ad Hoc Networks)的研究
  • 批准号:
    60372093
  • 批准年份:
    2003
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    EU-Funded
The International Political Thought of Women’s Regional Networks
妇女区域网络的国际政治思想
  • 批准号:
    DE240101244
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Discovery Early Career Researcher Award
Deep Adder Networks on Edge Devices
边缘设备上的深加法器网络
  • 批准号:
    FT230100549
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    ARC Future Fellowships
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
  • 批准号:
    2904538
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Research Grant
Active Integrated Antenna for Intelligent Arrays in 6G Non-Terrestrial Networks
用于 6G 非地面网络智能阵列的有源集成天线
  • 批准号:
    EP/Y003144/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Research Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了