Empirical and Causal Models for Heterogeneous Data Fusion
异构数据融合的经验模型和因果模型
基本信息
- 批准号:2149492
- 负责人:
- 金额:$ 28.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will advance the use of causal inference methods in situations where individual-level data are not available due to practical, ethical, or legal constraints. There has been a lot of work on the development of innovative methods to evaluate policy effects in observational databases, the area being termed causal inference. However, many of these methods require individual-level data. For a variety of reasons, it might not be possible to obtain individual-level data due to reasons such as maintaining patient privacy or other logistical issues. This project will extend statistical methodologies to accommodate practical real-world scenarios in a wide variety of disciplines, including medicine, the social sciences, and public health. There are a variety of important problems the new methods could be applied to, such as evaluating the effects of climate change on COVID19 incidence and deaths. Graduate students will be trained, and software and curricula in causal inference will be developed.This research project will develop new methods for combining heterogenous databases. Such data have become commonplace with the vast expansion of databases in various types of scientific and epidemiological applications. First, the project will develop new approaches to estimate empirical associations for heterogenous data fusion problems. The investigator will leverage model misspecification theory in conjunction with resampling/perturbation-based methodology. Second, the project will develop new causal inference approaches for heterogeneous data fusion problems, primarily focusing on constrained estimation, simulation-based approaches, and sensitivity analysis techniques. The results of this research should lead to new theoretical underpinnings in various areas of the mathematical sciences, including statistical theory and causal inference. Primary subfields of statistics that will be addressed in this research include likelihood theory and inference, estimating equations, model misspecification, and causal inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目将在由于实际、伦理或法律限制而无法获得个人层面数据的情况下推进因果推理方法的使用。在发展评估观测数据库中政策效果的创新方法方面已经进行了大量工作,这一领域被称为因果推理。然而,这些方法中的许多都需要个人层面的数据。由于各种原因,由于维护患者隐私或其他后勤问题等原因,可能无法获得个人层面的数据。该项目将扩展统计方法,以适应各种学科的实际情况,包括医学、社会科学和公共卫生。新方法可以应用于各种重要问题,例如评估气候变化对covid - 19发病率和死亡的影响。将培训研究生,并开发因果推理方面的软件和课程。本研究项目将开发组合异构数据库的新方法。随着各类科学和流行病学应用数据库的大量扩展,这些数据已变得司空见惯。首先,该项目将开发新的方法来估计异构数据融合问题的经验关联。研究者将利用模型错配理论结合重采样/基于扰动的方法。其次,该项目将为异构数据融合问题开发新的因果推理方法,主要关注约束估计、基于模拟的方法和灵敏度分析技术。这项研究的结果应该会在数学科学的各个领域带来新的理论基础,包括统计理论和因果推理。本研究将讨论的统计学的主要子领域包括似然理论和推理、估计方程、模型错配和因果推理。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debashis Ghosh其他文献
A machine learning-based approach to determine infection status in recipients of BBV152 whole virion inactivated SARS-CoV-2 vaccine for serological surveys
基于机器学习的方法,用于确定 BBV152 全病毒粒子灭活 SARS-CoV-2 疫苗接受者的感染状态,用于血清学调查
- DOI:
10.1101/2021.12.16.21267889 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Prateek Singh;R. Ujjainiya;S. Prakash;S. Naushin;V. Sardana;Nitin Bhatheja;Ajay Pratap Singh;Joydeb Barman;K. Kumar;Raju Khan;K. B. Tallapaka;Mahesh Anumalla;Amit Lahiri;Susanta Kar;V. Bhosale;Mrigank Srivastava;M. Mugale;C. P. Pandey;Shaziya Khan;Shivani Katiyar;Desh Raj;Sharmeen Ishteyaque;Sonu Khanka;Ankita Rani;Promila;Jyotsna Sharma;Anuradha Seth;M. Dutta;Nishant Saurabh;M. Veerapandian;G. Venkatachalam;D. Bansal;D. Gupta;P. Halami;M. S. Peddha;G. Sundaram;R. P. Veeranna;A. Pal;R. Singh;S. Anandasadagopan;P. Karuppanan;S. Rahman;G. Selvakumar;Subramanian Venkatesan;M. Karmakar;H. K. Sardana;A. Kothari;D. Parihar;Anupma Thakur;A. Saifi;N. Gupta;Y. Singh;Ritu Reddu;Rizul Gautam;Anuj Mishra;Anshuman Mishra;Iranna Gogeri;G. Rayasam;Y. Padwad;V. Patial;V. Hallan;Damanpreet Singh;N. Tirpude;Partha Chakrabarti;S. K. Maity;D. Ganguly;R. Sistla;Narender Kumar Balthu;Kiran Kumar A;S. Ranjith;Vijay Kumar;Piyush Singh Jamwal;Anshu Wali;Sajad Ahmed;Rekha Chouhan;Sumit G. Gandhi;Nancy Sharma;Garima Rai;Faisal Irshad;V. Jamwal;M. Paddar;S. Khan;F. Malik;Debashis Ghosh;Ghanshyam Thakkar;S. K. Barik;P. Tripathi;Y. K. Satija;Sneha Mohanty;Md. Tauseef Khan;U. Subudhi;Pradip Sen;Rashmi Kumar;Anshu Bhardwaj;Pawan Gupta;Deepak Sharma;A. Tuli;Saumya Ray Chaudhuri;S. Krishnamurthi;P. L;Ch. V. Rao;B. N. Singh;Arvindkumar H. Chaurasiya;Meera Chaurasiyar;Mayuri Bhadange;B. Likhitkar;S. Mohite;Yogita Patil;Mahesh Kulkarni;R. Joshi;V. Pandya;A. Patil;Rachel Samson;Tejas Vare;M. Dharne;Ashok Giri;S. Paranjape;G. N. Sastry;J. Kalita;T. Phukan;Prasenjit Manna;W. Romi;P. Bharali;Dibyajyoti Ozah;R. Sahu;P. Dutta;Moirangthem Goutam Singh;Gayatri Gogoi;Y. B. Tapadar;Elapavalooru Vssk Babu;Rajeev K Sukumaran;A. Nair;Anoop Puthiyamadam;PrajeeshKooloth Valappil;Adrash Velayudhan Pillai Prasannakumari;Kalpana Chodankar;Samir R. Damare;V. V. Agrawal;Kumardeep Chaudhary;Anurag Agrawal;S. Sengupta;D. Dash - 通讯作者:
D. Dash
A Weighted Survival Regression Framework for Incorporating External Prediction Information
- DOI:
10.1007/s42519-025-00471-1 - 发表时间:
2025-07-25 - 期刊:
- 影响因子:0.900
- 作者:
Debashis Ghosh - 通讯作者:
Debashis Ghosh
Sentinella<sup>®</sup>: A new portable intra-operative gamma camera for Sentinel Node localisation
- DOI:
10.1016/j.ejso.2010.08.021 - 发表时间:
2010-11-01 - 期刊:
- 影响因子:
- 作者:
Debashis Ghosh;A. O'Brien;D. Beck;C. Wickham;T. Davidson;M. Keshtgar - 通讯作者:
M. Keshtgar
Diagnostic and surgical challenges in treating squamous cell carcinoma of breast implant capsule: Case report and literature review
- DOI:
10.1016/j.ejso.2022.11.635 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Heba Khanfar;Natalie Allen;Naymar Torres;Khurram Chaudhary;Debashis Ghosh - 通讯作者:
Debashis Ghosh
Quantile-Based Subgroup Identification for Randomized Clinical Trials
随机临床试验的基于分位数的亚组识别
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Youngjoo Cho;Debashis Ghosh - 通讯作者:
Debashis Ghosh
Debashis Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debashis Ghosh', 18)}}的其他基金
New Methods in High-Dimensional Causal Inference
高维因果推理的新方法
- 批准号:
1914937 - 财政年份:2019
- 资助金额:
$ 28.15万 - 项目类别:
Standard Grant
Multivariate Statistical Methods for Genomic Data Integration
基因组数据整合的多元统计方法
- 批准号:
1457935 - 财政年份:2014
- 资助金额:
$ 28.15万 - 项目类别:
Continuing Grant
Multivariate Statistical Methods for Genomic Data Integration
基因组数据整合的多元统计方法
- 批准号:
1262538 - 财政年份:2013
- 资助金额:
$ 28.15万 - 项目类别:
Continuing Grant
相似海外基金
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
- 批准号:
2905812 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Studentship
Constructing Causal Models Through Path Analysis of Psychological Factors: Focusing on the English Proficiency of Non-English Majors
通过心理因素路径分析构建因果模型——以非英语专业学生英语水平为中心
- 批准号:
23K00660 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CBMS Conference: Foundations of Causal Graphical Models and Structure Discovery
CBMS 会议:因果图模型和结构发现的基础
- 批准号:
2227849 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Standard Grant
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10366570 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Graphical causal models for random networks
随机网络的图形因果模型
- 批准号:
EP/W015684/1 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Research Grant
The Mental Health Consequences of Life Course-Varying Exposure to Structural Sexual Minority Stigma: Advancing Causal Inference Using Longitudinal Models Moderated by Sexual Orientation
不同生命周期暴露于结构性性少数耻辱的心理健康后果:使用以性取向为调节的纵向模型推进因果推理
- 批准号:
10576079 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10549831 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Causal Models for Generalizable Robot Learning
可推广机器人学习的因果模型
- 批准号:
RGPIN-2021-04392 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Discovery Grants Program - Individual
Sparse Selection in Graphical Causal Models in High-dimensional Settings
高维设置中图形因果模型的稀疏选择
- 批准号:
546846-2020 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Postgraduate Scholarships - Doctoral
Learning Diverse Options for More Accurate Causal Models and Increased Generalization in a Multi-Task Setting
学习多种选项以获得更准确的因果模型并在多任务设置中增强泛化能力
- 批准号:
546636-2020 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral