New Methods in High-Dimensional Causal Inference

高维因果推理的新方法

基本信息

  • 批准号:
    1914937
  • 负责人:
  • 金额:
    $ 14.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

With the popularity of deep learning algorithms in the scientific literature as well as by their use and development by companies such as Google, Microsoft and Facebook, their deployment in a variety of tasks is rapidly accelerating. Because of this, better mathematical understanding of deep learning, and more broadly, machine learning algorithms in decision making processes are needed. A key innovation that is needed is how to marry machine learning algorithms into causal modelling procedures, which will help algorithms to develop "reasoning capabilities" (e.g., understand why an algorithm is making the decision/prediction that it makes). The problem that will be addressed in this project is how to model confounders so as to develop causal effect estimators that have desirable sampling properties. In addition, it is important to have well-justified procedures that computationally scale with the number of observations. In this project, the PI and team will focus their research in two areas. The first will be to understand the implications of deep learning algorithms and their performance on foundational assumptions for the popular potential outcomes model. In recent work, the PI discovered a fundamental tension between Gaussian process classification algorithms, covariate overlap and regularity of causal effect estimators. The goal of the first aim of the research will be to see if a similar phenomenon holds for deep learning algorithms. In addition, the interpolation properties of Gaussian process and deep learning-based classification algorithms will be explored. The second part of the project will deal with developing scalable algorithms for causal effect estimation. New computationally scalable algorithms for causal effect estimation will be developed as part of this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着深度学习算法在科学文献中的流行以及谷歌、微软和 Facebook 等公司的使用和开发,它们在各种任务中的部署正在迅速加速。 因此,需要对深度学习以及更广泛的决策过程中的机器学习算法有更好的数学理解。 所需的一项关键创新是如何将机器学习算法与因果建模程序结合起来,这将有助于算法开发“推理能力”(例如,理解算法为何做出决策/预测)。 该项目将解决的问题是如何对混杂因素进行建模,以便开发具有理想采样特性的因果效应估计器。 此外,重要的是要有合理的程序,可以根据观察的数量进行计算缩放。 在这个项目中,PI 和团队将把研究重点放在两个领域。 首先是了解深度学习算法的含义及其对流行潜在结果模型的基本假设的性能。 在最近的工作中,PI 发现了高斯过程分类算法、协变量重叠和因果效应估计器的规律性之间的根本矛盾。 该研究的第一个目标是看看深度学习算法是否存在类似的现象。 此外,还将探讨高斯过程的插值特性和基于深度学习的分类算法。 该项目的第二部分将开发用于因果效应估计的可扩展算法。 作为这项研究的一部分,将开发用于因果效应估计的新的计算可扩展算法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of regression discontinuity designs with censored data
使用删失数据分析回归不连续性设计
Nonlinear predictive directions in clinical trials
临床试验中的非线性预测方向
A Gaussian Process Framework for Overlap and Causal Effect Estimation with High-Dimensional Covariates
用于高维协变量重叠和因果效应估计的高斯过程框架
  • DOI:
    10.1515/jci-2018-0024
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ghosh, Debashis;Cruz-Cortés, Efrén
  • 通讯作者:
    Cruz-Cortés, Efrén
High-dimensional causal mediation analysis based on partial linear structural equation models
  • DOI:
    10.1016/j.csda.2022.107501
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xizhen Cai;Yeying Zhu;Yuan Huang;Debashis Ghosh
  • 通讯作者:
    Xizhen Cai;Yeying Zhu;Yuan Huang;Debashis Ghosh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debashis Ghosh其他文献

A machine learning-based approach to determine infection status in recipients of BBV152 whole virion inactivated SARS-CoV-2 vaccine for serological surveys
基于机器学习的方法,用于确定 BBV152 全病毒粒子灭活 SARS-CoV-2 疫苗接受者的感染状态,用于血清学调查
  • DOI:
    10.1101/2021.12.16.21267889
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prateek Singh;R. Ujjainiya;S. Prakash;S. Naushin;V. Sardana;Nitin Bhatheja;Ajay Pratap Singh;Joydeb Barman;K. Kumar;Raju Khan;K. B. Tallapaka;Mahesh Anumalla;Amit Lahiri;Susanta Kar;V. Bhosale;Mrigank Srivastava;M. Mugale;C. P. Pandey;Shaziya Khan;Shivani Katiyar;Desh Raj;Sharmeen Ishteyaque;Sonu Khanka;Ankita Rani;Promila;Jyotsna Sharma;Anuradha Seth;M. Dutta;Nishant Saurabh;M. Veerapandian;G. Venkatachalam;D. Bansal;D. Gupta;P. Halami;M. S. Peddha;G. Sundaram;R. P. Veeranna;A. Pal;R. Singh;S. Anandasadagopan;P. Karuppanan;S. Rahman;G. Selvakumar;Subramanian Venkatesan;M. Karmakar;H. K. Sardana;A. Kothari;D. Parihar;Anupma Thakur;A. Saifi;N. Gupta;Y. Singh;Ritu Reddu;Rizul Gautam;Anuj Mishra;Anshuman Mishra;Iranna Gogeri;G. Rayasam;Y. Padwad;V. Patial;V. Hallan;Damanpreet Singh;N. Tirpude;Partha Chakrabarti;S. K. Maity;D. Ganguly;R. Sistla;Narender Kumar Balthu;Kiran Kumar A;S. Ranjith;Vijay Kumar;Piyush Singh Jamwal;Anshu Wali;Sajad Ahmed;Rekha Chouhan;Sumit G. Gandhi;Nancy Sharma;Garima Rai;Faisal Irshad;V. Jamwal;M. Paddar;S. Khan;F. Malik;Debashis Ghosh;Ghanshyam Thakkar;S. K. Barik;P. Tripathi;Y. K. Satija;Sneha Mohanty;Md. Tauseef Khan;U. Subudhi;Pradip Sen;Rashmi Kumar;Anshu Bhardwaj;Pawan Gupta;Deepak Sharma;A. Tuli;Saumya Ray Chaudhuri;S. Krishnamurthi;P. L;Ch. V. Rao;B. N. Singh;Arvindkumar H. Chaurasiya;Meera Chaurasiyar;Mayuri Bhadange;B. Likhitkar;S. Mohite;Yogita Patil;Mahesh Kulkarni;R. Joshi;V. Pandya;A. Patil;Rachel Samson;Tejas Vare;M. Dharne;Ashok Giri;S. Paranjape;G. N. Sastry;J. Kalita;T. Phukan;Prasenjit Manna;W. Romi;P. Bharali;Dibyajyoti Ozah;R. Sahu;P. Dutta;Moirangthem Goutam Singh;Gayatri Gogoi;Y. B. Tapadar;Elapavalooru Vssk Babu;Rajeev K Sukumaran;A. Nair;Anoop Puthiyamadam;PrajeeshKooloth Valappil;Adrash Velayudhan Pillai Prasannakumari;Kalpana Chodankar;Samir R. Damare;V. V. Agrawal;Kumardeep Chaudhary;Anurag Agrawal;S. Sengupta;D. Dash
  • 通讯作者:
    D. Dash
Sentinella<sup>®</sup>: A new portable intra-operative gamma camera for Sentinel Node localisation
  • DOI:
    10.1016/j.ejso.2010.08.021
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Debashis Ghosh;A. O'Brien;D. Beck;C. Wickham;T. Davidson;M. Keshtgar
  • 通讯作者:
    M. Keshtgar
Diagnostic and surgical challenges in treating squamous cell carcinoma of breast implant capsule: Case report and literature review
  • DOI:
    10.1016/j.ejso.2022.11.635
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Heba Khanfar;Natalie Allen;Naymar Torres;Khurram Chaudhary;Debashis Ghosh
  • 通讯作者:
    Debashis Ghosh
A Weighted Survival Regression Framework for Incorporating External Prediction Information
Quantile-Based Subgroup Identification for Randomized Clinical Trials
随机临床试验的基于分位数的亚组识别
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Youngjoo Cho;Debashis Ghosh
  • 通讯作者:
    Debashis Ghosh

Debashis Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debashis Ghosh', 18)}}的其他基金

Empirical and Causal Models for Heterogeneous Data Fusion
异构数据融合的经验模型和因果模型
  • 批准号:
    2149492
  • 财政年份:
    2022
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Standard Grant
Multivariate Statistical Methods for Genomic Data Integration
基因组数据整合的多元统计方法
  • 批准号:
    1457935
  • 财政年份:
    2014
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant
Multivariate Statistical Methods for Genomic Data Integration
基因组数据整合的多元统计方法
  • 批准号:
    1262538
  • 财政年份:
    2013
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant
New Statistical Methods for High-Dimensional Association Tests with Applications to Large-Scale Genetic Data
高维关联测试的新统计方法及其在大规模遗传数据中的应用
  • 批准号:
    1902903
  • 财政年份:
    2019
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant
Biostatistics for Spatial and High-Dimensional Data: New Statistical Methods for Neuroimaging and Imaging Genomics
空间和高维数据的生物统计学:神经影像和影像基因组学的新统计方法
  • 批准号:
    RGPIN-2014-06542
  • 财政年份:
    2019
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Discovery Grants Program - Individual
Biostatistics for Spatial and High-Dimensional Data: New Statistical Methods for Neuroimaging and Imaging Genomics
空间和高维数据的生物统计学:神经影像和影像基因组学的新统计方法
  • 批准号:
    RGPIN-2014-06542
  • 财政年份:
    2018
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Discovery Grants Program - Individual
Systematization of calculation methods of three dimensional open channel flows based on the bottom velocity computation method and new developments of non-equilibrium sediment dynamics
基于底速计算方法的三维明渠水流计算方法体系化及非平衡沉积动力学新进展
  • 批准号:
    18H01546
  • 财政年份:
    2018
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Nonparametric Modeling Methods for High-Dimensional Time Series
高维时间序列的新非参数建模方法
  • 批准号:
    1712558
  • 财政年份:
    2017
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant
CAREER: New Statistical Methods for Classification and Analysis of High Dimensional and Functional Data
职业:高维和功能数据分类和分析的新统计方法
  • 批准号:
    1812354
  • 财政年份:
    2017
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant
Biostatistics for Spatial and High-Dimensional Data: New Statistical Methods for Neuroimaging and Imaging Genomics
空间和高维数据的生物统计学:神经影像和影像基因组学的新统计方法
  • 批准号:
    RGPIN-2014-06542
  • 财政年份:
    2017
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Discovery Grants Program - Individual
Biostatistics for Spatial and High-Dimensional Data: New Statistical Methods for Neuroimaging and Imaging Genomics
空间和高维数据的生物统计学:神经影像和影像基因组学的新统计方法
  • 批准号:
    RGPIN-2014-06542
  • 财政年份:
    2016
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了