Collaborative Research: NSF-BSF: On-Chip High-Resolution Mid-Infrared Spectroscopy with a Single Tunable van der Waals Heterostructure Photodetector

合作研究:NSF-BSF:具有单个可调谐范德华异质结构光电探测器的片上高分辨率中红外光谱仪

基本信息

项目摘要

Spectrometers measure the spectral composition of light. Mid-infrared spectrometers, operational in 2-9 µm spectral range, can be used in many important applications such as gas sensing, thermal imaging, microbial detection, and surveillance. Traditional spectrometers are bulky, expensive, and usually consist of mechanically moving parts. Although significant progress has been made in the miniaturization of spectrometers, currently, most compact spectrometers still consist of an array of on-chip components to capture the different spectral components of the light, leading to a footprint much larger than the operational wavelength. Moreover, current research on developing compact spectrometers focuses on visible and near-infrared wavelength range, and the effort on developing integrated on-chip mid-infrared spectrometers is very limited despite their technical significance. In this project, mid-infrared spectrometers based on a single, on-chip, tunable sensor will be developed, leveraging van der Waals heterostructures and advanced mathematical algorithms. The proposed research involves investigations of the optical properties of emerging materials, device fabrication, and numerical analysis. Scientifically, this research will reveal the light-matter interaction properties in emerging van der Waals heterostructures. The results will lead to ultracompact, on-chip spectrometers in the critical, but less-explored, mid-infrared wavelength range. In this project, postdoctoral researchers, and graduate and undergraduate students will acquire knowledge in semiconductor device design and fabrication, thus contributing to the development of next-generation workforce for semiconductor industry. The outreach activities will improve the scientific understanding of the general public and encourage underrepresented groups to pursue careers in science, technology, engineering, and math. The goal of this project is to develop a highly compact, mid-infrared spectrometer based on a single, tunable van der Waals heterostructure photodetector. First, the team will investigate the tunable light-matter interactions in van der Waals heterostructures in the mid-infrared wavelength range both theoretically and experimentally, laying the foundation for the proposed program. Second, tunable van der Waals heterostructure photodetectors will be demonstrated and their widely tunable photoresponse matrices will be characterized under different biasing conditions. Finally, the team will develop algorithms and measurement schemes to demonstrate spectroscopy functions based on the known tunable photoresponse characteristics. The proposed program aims to develop new paradigms for mid-infrared spectroscopy. Previous on-chip spectrometers usually utilize multiple photodetection elements to detect different spectral components of the light, and the spectrum is reconstructed from measurements from these various elements. Once fabricated, these photodetection elements can no longer be modified, thus limiting the resolution and the operational wavelength range of these spectrometers. The proposed heterostructure spectrometer will build upon a novel tunable single-element photodetector scheme, and further leverage the promising physical properties of emerging van der Waals heterostructures to advance the frontiers of on-chip infrared spectroscopy. The proposed spectrometer overcomes the resolution limitations of traditional on-chip spectrometers and enables spectroscopic functionality within a footprint comparable to the wavelength of the operation. The project is highly interdisciplinary and leverages latest developments in material sciences, condensed matter physics, and electrical engineering to deliver much-anticipated, transformative applications with van der Waals materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光谱仪测量光的光谱组成。中红外光谱仪可在2-9 µm光谱范围内工作,可用于许多重要应用,如气体传感、热成像、微生物检测和监视。传统的光谱仪体积庞大、价格昂贵,并且通常由机械运动部件组成。虽然在光谱仪的小型化方面已经取得了重大进展,但目前,大多数紧凑型光谱仪仍然由片上组件阵列组成,以捕获光的不同光谱分量,导致占用面积远远大于工作波长。此外,目前对开发紧凑型光谱仪的研究集中在可见光和近红外波长范围,而开发集成片上中红外光谱仪的努力非常有限,尽管它们具有技术意义。在该项目中,将开发基于单个片上可调传感器的中红外光谱仪,利用货车德瓦尔斯异质结构和先进的数学算法。拟议的研究涉及新兴材料的光学特性,器件制造和数值分析的调查。科学上,这项研究将揭示新兴的货车德瓦尔斯异质结构中的光-物质相互作用特性。结果将导致超紧凑,芯片上的光谱仪在关键的,但较少探索,中红外波长范围。在这个项目中,博士后研究人员,研究生和本科生将获得半导体器件设计和制造方面的知识,从而为半导体行业的下一代劳动力的发展做出贡献。推广活动将提高公众对科学的理解,并鼓励代表性不足的群体从事科学、技术、工程和数学方面的职业。该项目的目标是开发一种基于单个可调谐货车德瓦尔斯异质结构光电探测器的高度紧凑的中红外光谱仪。首先,该团队将从理论和实验两方面研究中红外波长范围内货车德瓦尔斯异质结构中的可调谐光-物质相互作用,为拟议计划奠定基础。第二,可调谐的货车德瓦耳斯异质结构光电探测器将被证明和他们广泛可调的光响应矩阵将在不同的偏置条件下的特点。最后,该团队将开发算法和测量方案,以基于已知的可调光响应特性来演示光谱功能。 该计划旨在开发中红外光谱的新范例。以前的片上光谱仪通常利用多个光电检测元件来检测光的不同光谱分量,并且根据来自这些各种元件的测量来重建光谱。一旦制造完成,这些光电探测元件就不能再进行修改,从而限制了这些光谱仪的分辨率和工作波长范围。所提出的异质结构光谱仪将建立在一种新型的可调谐单元件光电探测器方案的基础上,并进一步利用新兴的货车德瓦尔斯异质结构的有前途的物理特性,以推进芯片上红外光谱的前沿。所提出的光谱仪克服了传统片上光谱仪的分辨率限制,并使光谱功能的足迹内的操作波长相当。该项目是高度跨学科的,利用材料科学、凝聚态物理和电气工程的最新发展,提供备受期待的、变革性的货车德瓦尔斯材料应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashwin Ramasubramaniam其他文献

Two-dimensional material nanophotonics
二维材料纳米光子学
  • DOI:
    10.1038/nphoton.2014.271
  • 发表时间:
    2014-11-27
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Fengnian Xia;Han Wang;Di Xiao;Madan Dubey;Ashwin Ramasubramaniam
  • 通讯作者:
    Ashwin Ramasubramaniam
Excitations in layered materials from a non-empirical Wannier-localized optimally-tuned screened range-separated hybrid functional
基于非经验性的瓦尼尔局部优化调谐屏蔽范围分离杂化泛函的层状材料中的激发
  • DOI:
    10.1038/s41524-024-01478-1
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    María Camarasa-Gómez;Stephen E. Gant;Guy Ohad;Jeffrey B. Neaton;Ashwin Ramasubramaniam;Leeor Kronik
  • 通讯作者:
    Leeor Kronik
Catalysts for the hydrogen evolution reaction in alkaline medium: Configuring a cooperative mechanism at the Ag-Agsub2/subS-MoSsub2/sub interface
碱性介质中析氢反应的催化剂:在 Ag-Ag₂S-MoS₂界面构建协同机制
  • DOI:
    10.1016/j.jechem.2022.07.020
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    14.900
  • 作者:
    Avraham Bar-Hen;Simon Hettler;Ashwin Ramasubramaniam;Raul Arenal;Ronen Bar-Ziv;Maya Bar Sadan
  • 通讯作者:
    Maya Bar Sadan
Combining low-loss EELS experiments with machine learning-based algorithms to automate the phases separation imaging in industrial duplex stainless steels
将低损耗电子能量损失谱(EELS)实验与基于机器学习的算法相结合,实现工业双相不锈钢中相分离成像的自动化
  • DOI:
    10.1016/j.matchar.2024.113924
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Victoria Castro Riglos;Beatriz Amaya Dolores;Ashwin Ramasubramaniam;Lorena González-Souto;Rafael Sanchez;Javier Botana;Juan F. Almagro;José J. Calvino;Luc Lajaunie
  • 通讯作者:
    Luc Lajaunie
Protective molecular passivation of black phosphorus
黑磷的保护性分子钝化
  • DOI:
    10.1038/s41699-017-0004-8
  • 发表时间:
    2017-04-18
  • 期刊:
  • 影响因子:
    8.800
  • 作者:
    Vlada Artel;Qiushi Guo;Hagai Cohen;Raymond Gasper;Ashwin Ramasubramaniam;Fengnian Xia;Doron Naveh
  • 通讯作者:
    Doron Naveh

Ashwin Ramasubramaniam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashwin Ramasubramaniam', 18)}}的其他基金

Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
NSF-BSF: The Hard-Soft Interface -- Integrating 2D Semiconductors with Functional Polymers for Nanoscale Optoelectronics
NSF-BSF:硬-软接口——将二维半导体与功能聚合物集成以实现纳米级光电子学
  • 批准号:
    1808011
  • 财政年份:
    2018
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
NSF-BSF: Controlling Phase Selectivity and Electrocatalytic Activity of Transition-Metal Dichalcogenide Overlayers in Core-Shell Nanoparticles for CO2 Reduction
NSF-BSF:控制核壳纳米颗粒中过渡金属二硫属化物覆盖层的相选择性和电催化活性,用于 CO2 还原
  • 批准号:
    1803614
  • 财政年份:
    2018
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了