NSF-BSF: Controlling Phase Selectivity and Electrocatalytic Activity of Transition-Metal Dichalcogenide Overlayers in Core-Shell Nanoparticles for CO2 Reduction

NSF-BSF:控制核壳纳米颗粒中过渡金属二硫属化物覆盖层的相选择性和电催化活性,用于 CO2 还原

基本信息

项目摘要

The discovery and optimization of inexpensive catalyst materials is fundamental to fulfilling the urgent need for clean and sustainable sources of energy. In particular, conversion of carbon dioxide (CO2) to valuable chemical feedstocks and fuels, when complemented by renewable sources of energy, offers a promising route for sustainable management of carbon emissions, but the process is currently inefficient due to the lack of suitable catalysts. To address this challenge, this project, funded under the National Science Foundation (NSF) and US-Israel Binational Science Foundation (BSF) collaborative opportunity NSF 17-520, will support investigation of a new class of catalysts that enable the efficient conversion of CO2 to higher-value chemicals and fuels. A team of researchers from the University of Massachusetts Amherst and Ben Gurion University will analyze and evaluate catalysts that are engineered from materials that are abundant in the Earth's crust and inexpensive to process at large scales. The broader societal impacts of this project include recruitment and mentoring of underrepresented minority students at UMass Amherst, and outreach to the communities in Western Massachusetts and Israel. US-Israel scientific collaboration will be enhanced by graduate student exchanges between the partner institutions.Electrochemical reduction of CO2 is a promising avenue for closing the carbon cycle but is stymied at present by the lack of catalysts that are both active and selective at low overpotentials. This project focuses on earth-abundant electrocatalysts, based on semi-metallic phases of the molybdenum (Mo) and tungsten (W) family of layered transition-metal dichalcogenides (TMDCs), with the goal of addressing these demanding catalytic performance requirements. An integrated theory-synthesis-characterization approach facilitates rational design of transition-metal core-TMDC shell nanoparticles in which the electrochemically-active, semi-metallic phases of Mo and W TMDCs are preferentially stabilized over the ground-state, semiconducting phases. In particular, stabilization of the semi-metallic phases does not rely on conventional kinetic trapping approaches, being achieved instead by charge-transfer interactions between the metallic cores and the TMDC shells, which provides a greater degree of robustness against the undesirable semimetal-to-semiconductor phase transition. Fundamental advances in the development of such phase-engineered, core-shell nanoparticles project far-reaching scientific impact in the fields of two-dimensional materials and nanoscale catalysis, while also enabling renewable energy technologies. The research program is integrated with formative research opportunities for undergraduates from minority-serving institutions thereby nurturing the next generation of materials scientists and engineers. Presentations to the students and the broader public in Western Massachusetts and Israel on issues associated with nanotechnology and its applications in renewable energy further extend the impact of this research. US-Israel scientific collaboration will be enhanced by personnel exchanges between partner institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
廉价催化剂材料的发现和优化是满足对清洁和可持续能源的迫切需求的基础。特别是,将二氧化碳(CO2)转化为有价值的化学原料和燃料,再加上可再生能源,为碳排放的可持续管理提供了一条有希望的途径,但由于缺乏合适的催化剂,该过程目前效率低下。为了应对这一挑战,该项目由美国国家科学基金会(NSF)和美国-以色列两国科学基金会(BSF)合作机会NSF 17-520资助,将支持研究一类新的催化剂,使二氧化碳有效转化为更高价值的化学品和燃料。来自马萨诸塞州阿默斯特大学和本古里安大学的一组研究人员将分析和评估催化剂,这些催化剂是由地壳中丰富的材料制成的,大规模加工成本低廉。该项目的更广泛的社会影响包括在马萨诸塞大学阿默斯特分校招募和指导代表性不足的少数民族学生,以及在马萨诸塞州西部和以色列的社区推广。美国和以色列的科学合作将通过合作机构之间的研究生交流得到加强。二氧化碳的电化学还原是关闭碳循环的一种有前途的途径,但目前由于缺乏在低过电位下既有活性又有选择性的催化剂而受到阻碍。该项目的重点是地球丰富的电催化剂,基于钼(Mo)和钨(W)层状过渡金属二硫属化物(TMDC)家族的半金属相,目标是满足这些苛刻的催化性能要求。一个集成的理论合成表征方法有利于过渡金属核-TMDC壳纳米粒子的合理设计,其中Mo和W TMDC的电化学活性的半金属相优先稳定于基态的半导体相。特别地,半金属相的稳定化不依赖于常规的动力学捕获方法,而是通过金属核和TMDC壳之间的电荷转移相互作用来实现,这提供了针对不期望的半金属至半导体相变的更大程度的鲁棒性。这种相工程的核壳纳米粒子的发展取得了根本性进展,在二维材料和纳米催化领域产生了深远的科学影响,同时也使可再生能源技术成为可能。该研究计划与少数民族服务机构的本科生的形成性研究机会相结合,从而培养下一代材料科学家和工程师。向马萨诸塞州西部和以色列的学生和广大公众介绍与纳米技术及其在可再生能源中的应用有关的问题,进一步扩大了这项研究的影响。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Catalysts for the hydrogen evolution reaction in alkaline medium: Configuring a cooperative mechanism at the Ag-Ag2S-MoS2 interface
  • DOI:
    10.1016/j.jechem.2022.07.020
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    13.1
  • 作者:
    Avner Bar-Hen;S. Hettler;A. Ramasubramaniam;R. Arenal;R. Ziv;M. Sadan
  • 通讯作者:
    Avner Bar-Hen;S. Hettler;A. Ramasubramaniam;R. Arenal;R. Ziv;M. Sadan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashwin Ramasubramaniam其他文献

Two-dimensional material nanophotonics
二维材料纳米光子学
  • DOI:
    10.1038/nphoton.2014.271
  • 发表时间:
    2014-11-27
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Fengnian Xia;Han Wang;Di Xiao;Madan Dubey;Ashwin Ramasubramaniam
  • 通讯作者:
    Ashwin Ramasubramaniam
Catalysts for the hydrogen evolution reaction in alkaline medium: Configuring a cooperative mechanism at the Ag-Agsub2/subS-MoSsub2/sub interface
碱性介质中析氢反应的催化剂:在 Ag-Ag₂S-MoS₂界面构建协同机制
  • DOI:
    10.1016/j.jechem.2022.07.020
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    14.900
  • 作者:
    Avraham Bar-Hen;Simon Hettler;Ashwin Ramasubramaniam;Raul Arenal;Ronen Bar-Ziv;Maya Bar Sadan
  • 通讯作者:
    Maya Bar Sadan
Excitations in layered materials from a non-empirical Wannier-localized optimally-tuned screened range-separated hybrid functional
基于非经验性的瓦尼尔局部优化调谐屏蔽范围分离杂化泛函的层状材料中的激发
  • DOI:
    10.1038/s41524-024-01478-1
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    María Camarasa-Gómez;Stephen E. Gant;Guy Ohad;Jeffrey B. Neaton;Ashwin Ramasubramaniam;Leeor Kronik
  • 通讯作者:
    Leeor Kronik
Combining low-loss EELS experiments with machine learning-based algorithms to automate the phases separation imaging in industrial duplex stainless steels
将低损耗电子能量损失谱(EELS)实验与基于机器学习的算法相结合,实现工业双相不锈钢中相分离成像的自动化
  • DOI:
    10.1016/j.matchar.2024.113924
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Victoria Castro Riglos;Beatriz Amaya Dolores;Ashwin Ramasubramaniam;Lorena González-Souto;Rafael Sanchez;Javier Botana;Juan F. Almagro;José J. Calvino;Luc Lajaunie
  • 通讯作者:
    Luc Lajaunie
Protective molecular passivation of black phosphorus
黑磷的保护性分子钝化
  • DOI:
    10.1038/s41699-017-0004-8
  • 发表时间:
    2017-04-18
  • 期刊:
  • 影响因子:
    8.800
  • 作者:
    Vlada Artel;Qiushi Guo;Hagai Cohen;Raymond Gasper;Ashwin Ramasubramaniam;Fengnian Xia;Doron Naveh
  • 通讯作者:
    Doron Naveh

Ashwin Ramasubramaniam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashwin Ramasubramaniam', 18)}}的其他基金

Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: On-Chip High-Resolution Mid-Infrared Spectroscopy with a Single Tunable van der Waals Heterostructure Photodetector
合作研究:NSF-BSF:具有单个可调谐范德华异质结构光电探测器的片上高分辨率中红外光谱仪
  • 批准号:
    2150562
  • 财政年份:
    2022
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
NSF-BSF: The Hard-Soft Interface -- Integrating 2D Semiconductors with Functional Polymers for Nanoscale Optoelectronics
NSF-BSF:硬-软接口——将二维半导体与功能聚合物集成以实现纳米级光电子学
  • 批准号:
    1808011
  • 财政年份:
    2018
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 34.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了