Understanding How Bacteria Sense Mechanics Upon Attaching to Surfaces
了解细菌附着在表面上时如何感知力学
基本信息
- 批准号:2150878
- 负责人:
- 金额:$ 54.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biofilms are communities of microbes that are bound to each other and to a surface by a matrix of polymers and proteins. They foul and corrode infrastructure and cause chronic infections. At present, approaches to making surfaces that prevent infection have met with only limited success. The goal of this project is to determine how bacteria sense the mechanics of the surface upon attachment and respond to surface mechanics by starting to develop a biofilm. This work will establish basic knowledge that can be used to design surfaces that resist the development of biofilms by not giving bacteria the mechanical cue(s) needed to start forming a biofilm. Thus, the scientific aims will improve biofilm prevention and thereby benefit public health and infrastructure such as water treatment, shipping, and oil transport. Mentoring and education in ethics and mindset will improve the undergraduate environment and pipeline for STEM majors. A study of classroom education methods will improve undergraduate STEM education. The research objective of this project is to develop a predictive framework for understanding how bacteria use proteins in their cell envelopes to sense and respond to the mechanics of the surface to which they attach. The working hypothesis is that bacteria do this by transducing stresses and deformations in their envelopes that depend on the elasticity of both the bacterium and the substrate as well as the energy of adhesion with the surface. This study will extend studies of P. aeruginosa and generalize to include another rod-shaped Gram-negative bacterium (Escherichia coli), a rod-shaped Gram-positive bacterium (Bacillus subtilis), and a spherical Gram-positive bacterium (Staphylococcus aureus). Atomic force microscopy (AFM) will be used to measure the adhesion forces between bacteria and a wide range of test substrates with different surface chemistries and elasticities; AFM will also characterize the elasticity and topography of substrates. High-throughput culturing in well plates will be used to measure bacterial accumulation and growth on substrates, as well as the increase in antibiotic resistance that is a biofilm phenotype. Finite-element modeling will characterize the stresses and deformations that arise when different types of bacteria attach to different substrates. Trends shown by modeling will be validated by measuring the activity of mechanosensitive ion channels that are more open when the membrane stress is greater. Quantitative confocal microscopy and image analysis will measure the intracellular signaling that arises as a result of bacteria attaching to surfaces and the intercellular signaling that arises as a result of bacterial growth on the surface. Genetic manipulation (reporter strains and isogenic knockouts) will be used to measure signaling and to elucidate the role of specific gene products, such as candidate mechanosensory proteins.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物膜是通过聚合物和蛋白质基质彼此结合并结合到表面的微生物群落。 它们污染和腐蚀基础设施,造成慢性感染。目前,制造防止感染的表面的方法只取得了有限的成功。 该项目的目标是确定细菌如何在附着时感知表面的力学,并通过开始形成生物膜来响应表面力学。 这项工作将建立基础知识,可用于设计表面,通过不给细菌开始形成生物膜所需的机械提示来抵抗生物膜的发展。 因此,科学目标将改善生物膜预防,从而有利于公共卫生和基础设施,如水处理,航运和石油运输。 道德和心态方面的指导和教育将改善STEM专业的本科环境和管道。 课堂教育方法的研究将改善本科STEM教育。该项目的研究目标是开发一个预测框架,以了解细菌如何使用细胞包膜中的蛋白质来感知和响应它们所附着的表面的力学。工作假设是,细菌通过转换其包膜中的应力和变形来做到这一点,这些应力和变形取决于细菌和基质的弹性以及与表面粘附的能量。本研究将扩展铜绿假单胞菌的研究,并概括为包括另一种杆状革兰氏阴性细菌(大肠杆菌),杆状革兰氏阳性细菌(枯草芽孢杆菌)和球形革兰氏阳性细菌(金黄色葡萄球菌)。 原子力显微镜(AFM)将用于测量细菌与各种具有不同表面化学和弹性的测试基材之间的粘附力; AFM还将表征基材的弹性和形貌。将使用孔板中的高通量培养来测量基质上的细菌积累和生长,以及作为生物膜表型的抗生素抗性的增加。 有限元建模将描述不同类型的细菌附着在不同基质上时产生的应力和变形。 将通过测量膜应力较大时更开放的机械敏感离子通道的活性来验证建模所示的趋势。定量共聚焦显微镜和图像分析将测量由于细菌附着于表面而产生的细胞内信号传导和由于细菌在表面上生长而产生的细胞间信号传导。基因操作(报告菌株和同基因敲除)将用于测量信号传导和阐明特定基因产物的作用,如候选的机械感觉蛋白。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physiological Concentrations of Calcium Interact with Alginate and Extracellular DNA in the Matrices of Pseudomonas aeruginosa Biofilms to Impede Phagocytosis by Neutrophils
- DOI:10.1021/acs.langmuir.3c01637
- 发表时间:2023-11-16
- 期刊:
- 影响因子:3.9
- 作者:Wells,Marilyn J.;Currie,Hailey;Gordon,Vernita D.
- 通讯作者:Gordon,Vernita D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vernita Gordon其他文献
Surface remodeling and inversion of cell-matrix interactions underlie community recognition and dispersal in Vibrio cholerae biofilms
霍乱弧菌生物膜中细胞-基质相互作用的表面重塑和倒置是群落识别和扩散的基础
- DOI:
10.1038/s41467-024-55602-2 - 发表时间:
2025-01-02 - 期刊:
- 影响因子:15.700
- 作者:
Alexis Moreau;Danh T. Nguyen;Alexander J. Hinbest;Anthony Zamora;Ranjuna Weerasekera;Katherine Matej;Xuening Zhou;Sandra Sanchez;Ignacio Rodriguez Brenes;Jung-Shen Benny Tai;Carey D. Nadell;Wai-Leung Ng;Vernita Gordon;Natalia L. Komarova;Rich Olson;Ying Li;Jing Yan - 通讯作者:
Jing Yan
Specific adhesion of membranes simultaneously supports dual heterogeneities in lipids and proteins.
膜的特异性粘附同时支持脂质和蛋白质的双重异质性。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Orrin Shindell;N. Mica;Max Ritzer;Vernita Gordon - 通讯作者:
Vernita Gordon
Bacteria Sense Mechanical Force as a Cue to form a Pathogenic Biofilm
- DOI:
10.1016/j.bpj.2017.11.039 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Vernita Gordon - 通讯作者:
Vernita Gordon
Vernita Gordon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vernita Gordon', 18)}}的其他基金
MRI: Track 1 Acquisition of a System for Integrated Confocal Microscopy and Mechanical Interrogation
MRI:轨道 1 获取集成共焦显微镜和机械询问系统
- 批准号:
2320311 - 财政年份:2023
- 资助金额:
$ 54.81万 - 项目类别:
Standard Grant
Mechanics-Targeting Strategies for Biofilm Prevention and Remediation
生物膜预防和修复的力学目标策略
- 批准号:
1727544 - 财政年份:2017
- 资助金额:
$ 54.81万 - 项目类别:
Standard Grant
相似海外基金
NSF Postdoctoral Fellowship in Biology: Understanding how Tripartite Interactions between Insects, Symbiotic Bacteria, and Parasites Influence Infection Outcomes in Insect Vectors
NSF 生物学博士后奖学金:了解昆虫、共生细菌和寄生虫之间的三方相互作用如何影响昆虫媒介的感染结果
- 批准号:
2305730 - 财政年份:2023
- 资助金额:
$ 54.81万 - 项目类别:
Fellowship Award
Understanding how bacteria adapt and function in the complex gut ecosystem
了解细菌如何在复杂的肠道生态系统中适应和发挥作用
- 批准号:
FL210100258 - 财政年份:2022
- 资助金额:
$ 54.81万 - 项目类别:
Australian Laureate Fellowships
Understanding how heme and iron are metabolized by anaerobic commensal bacteria and host-microbiome communities
了解厌氧共生细菌和宿主微生物群落如何代谢血红素和铁
- 批准号:
10348775 - 财政年份:2020
- 资助金额:
$ 54.81万 - 项目类别:
Understanding how bacteria sense and adapt to their environment
了解细菌如何感知和适应环境
- 批准号:
2238456 - 财政年份:2019
- 资助金额:
$ 54.81万 - 项目类别:
Studentship
Understanding how an antibiotic "warhead" is made by bacteria
了解细菌如何制造抗生素“弹头”
- 批准号:
2060455 - 财政年份:2018
- 资助金额:
$ 54.81万 - 项目类别:
Studentship
MICA: Understanding how bacteria respond to efflux inhibition
MICA:了解细菌如何响应外排抑制
- 批准号:
MR/P022596/1 - 财政年份:2017
- 资助金额:
$ 54.81万 - 项目类别:
Research Grant
Understanding how bacteriophages affect wound ecologies and developing new tools to harness bacteria-phage interactions
了解噬菌体如何影响伤口生态并开发新工具来利用细菌-噬菌体相互作用
- 批准号:
10204665 - 财政年份:2016
- 资助金额:
$ 54.81万 - 项目类别:
Understanding how bacteria cause persistent infection
了解细菌如何引起持续感染
- 批准号:
nhmrc : GNT1066791 - 财政年份:2014
- 资助金额:
$ 54.81万 - 项目类别:
Project Grants
Understanding how bacteria become sticky
了解细菌如何变得粘稠
- 批准号:
DE130101169 - 财政年份:2013
- 资助金额:
$ 54.81万 - 项目类别:
Discovery Early Career Researcher Award
Understanding how bacteria form multicellular biofilm communities on surfaces: the role of cyclic diguanylate as a potent biofilm activator
了解细菌如何在表面形成多细胞生物膜群落:环状二鸟苷酸作为有效生物膜激活剂的作用
- 批准号:
DP130100957 - 财政年份:2013
- 资助金额:
$ 54.81万 - 项目类别:
Discovery Projects