Collaborative Research: MODULUS: Stochastic reaction-diffusion equations on metric graphs and spatially-resolved dynamics of virus infection spread
合作研究:MODULUS:度量图上的随机反应扩散方程和病毒感染传播的空间分辨动力学
基本信息
- 批准号:2152103
- 负责人:
- 金额:$ 33.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports the development of new mathematical tools and biological experiments that are essential to understanding the mechanisms of virus spread and extinction. A new framework, to enable an integrated experimental-mathematical study, will be developed to control the spatial distribution of the host cell population and to quantify how such spatial structure affects viral evolution and decay. The project has basic research, medical, and public health impact, since the analytical and experimental methods can be extended to elucidate mechanisms of infection spread by viruses of public health importance, including influenza A virus, Zika virus, and coronaviruses. As an interdisciplinary study, the research will cross-train mathematicians, biologists, and engineers, contributing significantly to workforce development. Broader objectives include increased participation and diversity in STEM fields while promoting a broader understanding of science and technology by the public through wide dissemination. The project goal is to determine both the probability of virus extinction during infection spread and the spreading speed in terms of the spatial structure of host cell populations. A new mathematical framework, stochastic reaction-diffusion equations on metric graphs, will be developed to study the dynamics of virus infections over any network structure. The biological experiments are cutting edge: virus infections will be performed on micro-patterned host cells that enable quantification of population level features of infection spread in any network structure, a key advantage over traditional Petri-dish studies. Analysis of the experimentally informed stochastic equations has the potential to push the frontier of current knowledge about the role of space and stochasticity in population dynamics. This new framework motivates problems that cut across several mathematical disciplines (probability, partial differential equations and mathematical biology) and that are of interest to a large group of applied mathematicians and applied scientists. These problems include (i) What is the probability of extinction of virus and the propagation speed in terms of geometric properties of the metric graph, such as the branching structure and the edge lengths of the graph? (ii) What is the probability of coexistence of virus and defective interfering particles during co-infection spread, and the effect of the underlying spatial structure on this probability? The project brings new probabilistic tools and perspectives to solve these problems and to generate mechanistic insights about virus infection spread. This award is being co-funded by the MPS Division of Mathematical Sciences (DMS) through the Mathematical Biology Program and by the Division of Molecular and Cellular Biosciences (MCB) through the Systems and Synthetic Biology and the Cellular Dynamics and Function Cluster.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持开发新的数学工具和生物实验,这些工具和实验对于理解病毒传播和灭绝的机制至关重要。一个新的框架,使一个综合的实验数学研究,将被开发来控制宿主细胞群的空间分布,并量化这种空间结构如何影响病毒的进化和衰变。该项目具有基础研究,医学和公共卫生影响,因为分析和实验方法可以扩展到阐明公共卫生重要性病毒的感染传播机制,包括甲型流感病毒,寨卡病毒和冠状病毒。作为一项跨学科研究,该研究将交叉培训数学家,生物学家和工程师,为劳动力发展做出重大贡献。更广泛的目标包括增加STEM领域的参与和多样性,同时通过广泛传播促进公众对科学和技术的更广泛理解。 该项目的目标是确定病毒在感染传播过程中灭绝的概率和宿主细胞群体空间结构方面的传播速度。一个新的数学框架,随机反应扩散方程的度量图,将被开发来研究任何网络结构上的病毒感染的动力学。生物学实验是尖端的:病毒感染将在微模式化的宿主细胞上进行,从而能够量化任何网络结构中感染传播的群体水平特征,这是传统培养皿研究的关键优势。分析实验得知的随机方程有可能推动前沿的空间和随机性在人口动态中的作用,目前的知识。这个新的框架激发了跨越几个数学学科(概率论,偏微分方程和数学生物学)的问题,并引起了一大群应用数学家和应用科学家的兴趣。这些问题包括:(i)根据度量图的几何性质,如图的分支结构和边长,病毒的灭绝概率和传播速度是多少?(ii)在共感染传播过程中,病毒和缺陷干扰颗粒共存的概率是多少,以及底层空间结构对这种概率的影响?该项目带来了新的概率工具和观点来解决这些问题,并产生有关病毒感染传播的机制见解。该奖项由MPS数学科学部(DMS)通过数学生物学计划和分子与细胞生物科学部(MCB)通过系统与合成生物学和细胞动力学与功能集群共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constrained Langevin approximation for the Togashi-Kaneko model of autocatalytic reactions
自催化反应 Togashi-Kaneko 模型的约束 Langevin 近似
- DOI:10.3934/mbe.2023201
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Fan, Wai-Tong;Yang, Yifan;Yuan, Chaojie
- 通讯作者:Yuan, Chaojie
3D shear flows driven by Lévy noise at the boundary
由边界处的 Lévy 噪声驱动的 3D 剪切流
- DOI:10.3934/puqr.2023004
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fan, Wai-tong;Pakzad, Ali;Tawri, Krutika;Temam, Roger
- 通讯作者:Temam, Roger
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wai Fan其他文献
Wai Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wai Fan', 18)}}的其他基金
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
- 批准号:
2348164 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Continuing Grant
Stochastic Systems for Interacting Populations
相互作用群体的随机系统
- 批准号:
1855417 - 财政年份:2018
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Stochastic Systems for Interacting Populations
相互作用群体的随机系统
- 批准号:
1804492 - 财政年份:2018
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MODULUS: Protein droplets drive membrane bending and cytoskeletal organization
合作研究:MODULUS:蛋白质液滴驱动膜弯曲和细胞骨架组织
- 批准号:
2327243 - 财政年份:2023
- 资助金额:
$ 33.57万 - 项目类别:
Continuing Grant
Collaborative Research: MODULUS: Protein droplets drive membrane bending and cytoskeletal organization
合作研究:MODULUS:蛋白质液滴驱动膜弯曲和细胞骨架组织
- 批准号:
2327244 - 财政年份:2023
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232740 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232741 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Nuclear envelope shape change coordination with chromosome segregation in mitosis in fission yeast
合作研究:MODULUS:核膜形状变化与裂殖酵母有丝分裂中染色体分离的协调
- 批准号:
2133243 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Copy Number Alterations and Xenobiotic adaptation
合作研究:MODULUS:拷贝数改变和异生素适应
- 批准号:
2141650 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232739 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Stochastic reaction-diffusion equations on metric graphs and spatially-resolved dynamics of virus infection spread
合作研究:MODULUS:度量图上的随机反应扩散方程和病毒感染传播的空间分辨动力学
- 批准号:
2151959 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232742 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Nuclear envelope shape change coordination with chromosome segregation in mitosis in fission yeast
合作研究:MODULUS:核膜形状变化与裂殖酵母有丝分裂中染色体分离的协调
- 批准号:
2133276 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant