Stochastic Systems for Interacting Populations
相互作用群体的随机系统
基本信息
- 批准号:1804492
- 负责人:
- 金额:$ 15.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project investigates probability questions arising in the study of population dynamics and genealogies with multi-species interactions. The latter study is a key to understanding biodiversity in ecosystems, epidemiological spread, heterogeneity of cancer tumors, and the mechanisms underlying many complex systems in nature. This project is the first step towards the development of more refined models that not only address standing questions in virology and ecology, but also catalyze the generation of new mathematical methods. The involvement of undergraduate students in stochastic analysis and simulations will enhance their ability to work at the interface between probability and applied sciences. The principal investigator aims to design various spatial stochastic models, including nonstandard interacting particle systems, interacting superprocesses, and coupled stochastic partial differential equations on general metric graphs, to contribute to a deeper understanding of the effect of spatial structures and randomness on various population dynamics and their genealogies in different scales of observation. New challenges arise in the study of well-posedness and time asymptotic properties of these models. The project will focus on two research directions.(i) Explore new connections among these models. Outcomes of this research are expected to include scaling limit theorems and duality formulas that rigorously justify the new connections.(ii) Study the long-time behavior of these spatial stochastic models. New probabilistic methods will be developed to compute quantities of interest, such as the asymptotic shape of competition outcome and the propagation speeds of travelling waves on networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目探讨在种群动态和多物种相互作用的谱系研究中出现的概率问题。后一项研究是理解生态系统生物多样性、流行病学传播、癌症肿瘤异质性以及自然界许多复杂系统背后机制的关键。这个项目是朝着发展更精细的模型迈出的第一步,这些模型不仅解决了病毒学和生态学中存在的问题,而且还促进了新的数学方法的产生。参与随机分析和模拟的本科生将提高他们在概率论和应用科学之间的界面工作的能力。在不同的观测尺度下,设计不同的空间随机模型,包括非标准相互作用粒子系统、相互作用超过程和一般度量图上的耦合随机偏微分方程,以深入了解空间结构和随机性对各种种群动态及其谱系的影响。这些模型的适定性和时间渐近性质的研究提出了新的挑战。该项目将重点研究两个方向。探索这些模式之间的新联系。这项研究的结果预计将包括尺度极限定理和对偶公式,严格证明新的联系。(ii)研究这些空间随机模型的长期行为。将开发新的概率方法来计算感兴趣的数量,例如竞争结果的渐近形状和网络上行波的传播速度。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint distribution of Busemann functions in the exactly solvable corner growth model
- DOI:10.2140/pmp.2020.1.55
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:W. Fan;T. Seppalainen
- 通讯作者:W. Fan;T. Seppalainen
Stochastic Variability of Tropical Cyclone Intensity at the Maximum Potential Intensity Equilibrium
最大位势强度平衡时热带气旋强度的随机变化
- DOI:10.1175/jas-d-20-0070.1
- 发表时间:2020
- 期刊:
- 影响因子:3.1
- 作者:Nguyen, Phuong;Kieu, Chanh;Fan, Wai-Tong
- 通讯作者:Fan, Wai-Tong
Wave Propagation for Reaction-Diffusion Equations on Infinite Random Trees
无限随机树上反应扩散方程的波传播
- DOI:10.1007/s00220-021-04085-z
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Fan, Wai-Tong Louis;Hu, Wenqing;Terlov, Grigory
- 通讯作者:Terlov, Grigory
Impossibility of Consistent Distance Estimation from Sequence Lengths Under the TKF91 Model
TKF91模型下不可能根据序列长度进行一致的距离估计
- DOI:10.1007/s11538-020-00801-3
- 发表时间:2020
- 期刊:
- 影响因子:3.5
- 作者:Fan, Wai-Tong Louis;Legried, Brandon;Roch, Sebastien
- 通讯作者:Roch, Sebastien
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wai Fan其他文献
Wai Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wai Fan', 18)}}的其他基金
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
- 批准号:
2348164 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Continuing Grant
Collaborative Research: MODULUS: Stochastic reaction-diffusion equations on metric graphs and spatially-resolved dynamics of virus infection spread
合作研究:MODULUS:度量图上的随机反应扩散方程和病毒感染传播的空间分辨动力学
- 批准号:
2152103 - 财政年份:2022
- 资助金额:
$ 15.43万 - 项目类别:
Standard Grant
Stochastic Systems for Interacting Populations
相互作用群体的随机系统
- 批准号:
1855417 - 财政年份:2018
- 资助金额:
$ 15.43万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 15.43万 - 项目类别:
Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2206085 - 财政年份:2022
- 资助金额:
$ 15.43万 - 项目类别:
Standard Grant
Towards the Stochastic Quantisation of Interacting Systems of Fermions and Bosons
费米子和玻色子相互作用系统的随机量子化
- 批准号:
2602127 - 财政年份:2021
- 资助金额:
$ 15.43万 - 项目类别:
Studentship
Stochastic PDEs, interacting particle systems and large deviations
随机偏微分方程、相互作用的粒子系统和大偏差
- 批准号:
2592873 - 财政年份:2020
- 资助金额:
$ 15.43万 - 项目类别:
Studentship
Stochastic Partial Differential Equations and Interacting particle systems
随机偏微分方程和相互作用的粒子系统
- 批准号:
2438206 - 财政年份:2020
- 资助金额:
$ 15.43万 - 项目类别:
Studentship
Interacting stochastic systems and their limiting behaviour
相互作用的随机系统及其限制行为
- 批准号:
2274603 - 财政年份:2019
- 资助金额:
$ 15.43万 - 项目类别:
Studentship
Stochastic active flows and interacting particle systems
随机主动流和相互作用的粒子系统
- 批准号:
2284235 - 财政年份:2019
- 资助金额:
$ 15.43万 - 项目类别:
Studentship
Criticality and Nonlinearity in Interacting Particle Systems and Stochastic Partial Differential Equations
相互作用粒子系统和随机偏微分方程中的临界性和非线性
- 批准号:
1953407 - 财政年份:2019
- 资助金额:
$ 15.43万 - 项目类别:
Standard Grant
Studies on large scale interacting systems and related stochastic partial differential equations
大规模相互作用系统及相关随机偏微分方程研究
- 批准号:
18H03672 - 财政年份:2018
- 资助金额:
$ 15.43万 - 项目类别:
Grant-in-Aid for Scientific Research (A)