FRG: Collaborative Research: Mathematical and Statistical Analysis of Compressible Data on Compressive Networks

FRG:协作研究:压缩网络上可压缩数据的数学和统计分析

基本信息

  • 批准号:
    2152289
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Large-scale high-dimensional data sets are becoming ubiquitous in modern society, particularly in the areas of physical, biomedical, and social applications. This focused research group (FRG) will address the foundational challenges, both computational and theoretical, arising in the analysis of high-dimensional data by leveraging its compressible features. Discovering such compressible features is a major challenge in data analysis, which the team of investigators will approach using hierarchical decompositions derived from spectral, statistical, and algebraic geometric analysis of data. In contrast to interpolation-based methods, such as deep neural networks which are often difficult to interpret, the group will construct optimally defined compressive networks, specifically tailored to such compressible features. Doing so will enable an accurate and efficient extraction and manipulation of sparse representations of high-dimensional data in an inherently interpretable manner. For instance, one focus of the project is to extend the binary expansion testing methods developed by members of the group, which have shown promise in both statistical power and computational complexity in low-dimensional settings. A high-dimensional generalization of binary expansion testing would, in turn, enable the direct application to selecting personalized medical treatment plans based on increasingly complex data sets. The FRG investigators will collaborate across the disciplines of mathematical analysis, data science, statistics, and computation, as well as across institutions. The specific goals of this project include generalizing classical concepts of "compressible" features using ideas from spectral theory, algebraic geometry, energy and optimization, and network interactions. This will lead to a deeper understanding of the mathematical and statistical foundations of compressible high-dimensional data sets on compressive networks. Using newly developed compressible features, the FRG team will then design and develop accurate and efficient computational tools for large-scale high-dimensional data sets. All the work to be done will be aimed at collaborating directly with application domain scientists to enhance the efficacy of the proposed methods. The FRG investigators will also jointly mentor graduate and undergraduate students, who will then have the benefits of training across disciplines and access to a variety of ideas and tools in complementary and integrative research areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模高维数据集在现代社会中变得无处不在,特别是在物理、生物医学和社会应用领域。这个重点研究小组(FRG)将通过利用高维数据的可压缩特性来解决高维数据分析中出现的计算和理论基础挑战。发现这种可压缩特征是数据分析中的一个主要挑战,研究团队将使用从数据的光谱、统计和代数几何分析中得出的分层分解方法来解决这个问题。与基于插值的方法(如深度神经网络)相比,深度神经网络通常难以解释,该团队将构建最佳定义的压缩网络,专门针对此类可压缩特征进行定制。这样做将能够以固有的可解释的方式准确有效地提取和操作高维数据的稀疏表示。例如,该项目的一个重点是扩展该小组成员开发的二进制展开测试方法,这些方法在低维环境下的统计能力和计算复杂性方面都显示出前景。二元展开测试的高维泛化反过来又使其能够直接应用于基于日益复杂的数据集选择个性化医疗计划。FRG的研究人员将在数学分析、数据科学、统计学和计算等学科之间以及跨机构之间进行合作。该项目的具体目标包括利用谱理论、代数几何、能量和优化以及网络相互作用的思想推广“可压缩”特征的经典概念。这将导致对压缩网络上的可压缩高维数据集的数学和统计基础有更深的理解。利用新开发的可压缩特性,FRG团队将为大规模高维数据集设计和开发准确高效的计算工具。所有要做的工作都旨在与应用领域的科学家直接合作,以提高所提出方法的有效性。FRG研究人员还将联合指导研究生和本科生,他们将受益于跨学科培训,并获得互补和综合研究领域的各种思想和工具。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation
  • DOI:
    10.48550/arxiv.2210.12396
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Yin;Yao Li;Cho-Jui Hsieh;Kai-Wei Chang
  • 通讯作者:
    Fan Yin;Yao Li;Cho-Jui Hsieh;Kai-Wei Chang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Zhang其他文献

A Novel Cross-Domain Many-to-one V2I for Hetergeneous VANETs.
一种用于异构 VANET 的新型跨域多对一 V2I。
Solving subset sum problems by time-free spiking neural P systemsbr /
通过无时间尖峰神经 P 系统解决子集和问题
A Numerical Investigation on the Aerodynamic Properties of the Wavy Circular Cylinders
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai Zhang
  • 通讯作者:
    Kai Zhang
A universal method for hysteresis-free and stable perovskite solar cells using water pre-treatment
使用水预处理实现无滞后且稳定的钙钛矿太阳能电池的通用方法
  • DOI:
    10.1016/j.cej.2020.126435
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Jingshu Wan;Li Tao;Qiao Wang;Kai Zhang;Jian Xie;Jun Zhang;Hao Wang
  • 通讯作者:
    Hao Wang
Boundary Hölder regularity for elliptic equations
椭圆方程的边界 Hölder 正则性

Kai Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Zhang', 18)}}的其他基金

Binary Expansion Statistics: A Nonparametric Inference Framework for Big Data
二进制展开统计:大数据的非参数推理框架
  • 批准号:
    1916237
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Geometric Perspectives on the Correlation
相关性的几何视角
  • 批准号:
    1613112
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Statistical Theory and Methods Beyond the Dimensionality Barrier
BIGDATA:协作研究:F:超越维度障碍的统计理论和方法
  • 批准号:
    1633212
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: Inference for Linear Model Parameters in Model-free Populations
合作研究:无模型群体中线性模型参数的推断
  • 批准号:
    1309619
  • 财政年份:
    2013
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了