Binary Expansion Statistics: A Nonparametric Inference Framework for Big Data

二进制展开统计:大数据的非参数推理框架

基本信息

  • 批准号:
    1916237
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

In the Big Data era, the large numbers of observations and variables pose unprecedented challenging problems of complex forms of dependency and high computing expenses. This situation is especially common in important problems in Astronomy, Biology, Economics, Engineering, Finance, Genetics, Genomics, Neurosciences, etc. To meet these challenges, the PI proposes to study these problems through a novel framework of binary expansion statistics. The overall objective of the project is (i) to provide an in-depth understanding of complex dependency in Big Data with new theory and methods, and (ii) to build a stronger connection between Statistics and Computer Science. The PI anticipates the achievement of his goals through an integration of research and education plans.The binary expansion statistics framework is able to "divide and conquer" any complex dependency, i.e., to approximate and decompose nonlinear dependency into interactions of Bernoulli variables in the binary expansion filtration and then aggregate the information to produce nonparametric inference of dependence. This approach connects the inference problems to important concepts in Statistics and Computer Science such as multiple testing, Hadamard transform, and bitwise operation. The research agenda is to further develop this framework and study several fundamental problems to develop optimal theory, methodologies and algorithms. The PI also has comprehensive plans on educating graduate and undergraduate students and on disseminating the research results to the broader scientific community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据时代,大量的观测和变量提出了前所未有的具有挑战性的依赖形式复杂和计算费用高的问题。这种情况在天文学、生物学、经济学、工程学、金融学、遗传学、基因组学、神经科学等重要问题中尤其常见。为了应对这些挑战,PI建议通过一个新的二进制扩展统计框架来研究这些问题。该项目的总体目标是(I)用新的理论和方法深入了解大数据中的复杂依赖关系,以及(Ii)在统计学和计算机科学之间建立更紧密的联系。PI期望通过研究和教育计划的整合来实现他的目标,二进制扩展统计框架能够对任何复杂的依赖项进行分割和征服,即在二进制扩展过滤中将非线性依赖项近似和分解为伯努利变量的交互作用,然后聚集信息以产生依赖项的非参数推理。这种方法将推理问题与统计和计算机科学中的重要概念联系起来,例如多重测试、Hadamard变换和按位运算。研究议程是进一步发展这一框架并研究几个基本问题,以发展最优理论、方法和算法。PI也有关于教育研究生和本科生以及向更广泛的科学界传播研究成果的全面计划。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BET on Independence
Penalized linear regression with high-dimensional pairwise screening
具有高维成对筛选的惩罚线性回归
  • DOI:
    10.5705/ss.202018.0170
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Gong, Siliang;Zhang, Kai;Liu, Yufeng
  • 通讯作者:
    Liu, Yufeng
Nonparametric Prediction Distribution from Resolution-Wise Regression with Heterogeneous Data
异质数据的分辨率回归的非参数预测分布
  • DOI:
    10.1080/07350015.2022.2115498
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Li, Jialu;Zhang, Wan;Wang, Peiyao;Li, Qizhai;Zhang, Kai;Liu, Yufeng
  • 通讯作者:
    Liu, Yufeng
Comments on “A Gibbs Sampler for a Class of Random Convex Polytopes”
对“一类随机凸多面体的吉布斯采样器”的评论
The Binary Expansion Randomized Ensemble Test
二元展开随机集成测试
  • DOI:
    10.5705/ss.202021.0100
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Lee, Duyeol;Zhang, Kai;Kosorok, Michael R.
  • 通讯作者:
    Kosorok, Michael R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Zhang其他文献

A Novel Cross-Domain Many-to-one V2I for Hetergeneous VANETs.
一种用于异构 VANET 的新型跨域多对一 V2I。
Solving subset sum problems by time-free spiking neural P systemsbr /
通过无时间尖峰神经 P 系统解决子集和问题
A Numerical Investigation on the Aerodynamic Properties of the Wavy Circular Cylinders
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai Zhang
  • 通讯作者:
    Kai Zhang
A universal method for hysteresis-free and stable perovskite solar cells using water pre-treatment
使用水预处理实现无滞后且稳定的钙钛矿太阳能电池的通用方法
  • DOI:
    10.1016/j.cej.2020.126435
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Jingshu Wan;Li Tao;Qiao Wang;Kai Zhang;Jian Xie;Jun Zhang;Hao Wang
  • 通讯作者:
    Hao Wang
Boundary Hölder regularity for elliptic equations
椭圆方程的边界 Hölder 正则性

Kai Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Zhang', 18)}}的其他基金

FRG: Collaborative Research: Mathematical and Statistical Analysis of Compressible Data on Compressive Networks
FRG:协作研究:压缩网络上可压缩数据的数学和统计分析
  • 批准号:
    2152289
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Geometric Perspectives on the Correlation
相关性的几何视角
  • 批准号:
    1613112
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Statistical Theory and Methods Beyond the Dimensionality Barrier
BIGDATA:协作研究:F:超越维度障碍的统计理论和方法
  • 批准号:
    1633212
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Inference for Linear Model Parameters in Model-free Populations
合作研究:无模型群体中线性模型参数的推断
  • 批准号:
    1309619
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Establishing a novel culture system for lymphoid-biased HSC expansion
建立用于淋巴偏向 HSC 扩增的新型培养系统
  • 批准号:
    24K19206
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X005003/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Studies on Hadron Resonances by uniformized Mittag-Leffler expansion
均匀 Mittag-Leffler 展开式的强子共振研究
  • 批准号:
    24K07062
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
機能的な膵β細胞量を増加させる「膵β細胞のhealthy expansion」の分子機構の解明
阐明增加功能性胰腺β细胞数量的“胰腺β细胞健康扩张”的分子机制
  • 批准号:
    23K27652
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tri-State Expansion, Curriculum Evolution, and Equity during BioTechnician Training (Tri ExCEEd BTT)
生物技术人员培训期间的三州扩展、课程演变和公平 (Tri ExCEEd BTT)
  • 批准号:
    2400830
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FDSS Track 1: Expansion and Integration of Space Physics at the University of Delaware
FDSS Track 1:特拉华大学空间物理学的扩展和整合
  • 批准号:
    2347952
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004864/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004775/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
  • 批准号:
    2411677
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X00418X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了