Growth and Motion in a Random Medium
随机介质中的生长和运动
基本信息
- 批准号:2152362
- 负责人:
- 金额:$ 33.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is fundamental research on mathematical models that describe complex interactions, growth, and motion in an irregular environment with stochastic unpredictability. The goal is to discover general mathematical laws that govern such systems. These systems appear quite different at small scales and large scales. So it is important to understand how different rules for small-scale evolution lead to different large-scale, system-wide behavior. Real-world phenomena that such mathematical studies can illuminate include the motion of vehicles, packets in communication networks, fluid particles in a tube, fluid spreading in a porous medium, epidemics advancing in a population, and the fluctuations of a polymer chain in a fluid. Laboratory experiments have demonstrated that these mathematical models capture essential features of physical reality. Over the long term, understanding complex interactions has profound implications for science and engineering and thereby for society. Mathematical systems of the kind described in the proposal are intensely and concurrently studied by mathematicians, natural scientists, social scientists, and engineers. This project provides research training opportunities for graduate students. This project investigates mathematical models of growth and motion in random media. Examples include first-passage percolation, the corner growth model, random walk in random environment, directed polymer models, and stochastic partial differential equations. The objectives of this work are mathematically rigorous descriptions of the behavior of these models and the development of robust tools for their analysis. Specific goals include regularity of limit shapes, properties of optimal paths such as their length, fluctuations and geometric features, ergodic properties, descriptions of large scale limits in terms of variational formulas and entropy, and descriptions of probability distributions of complicated random geometric objects such as trees of geodesics and competition interfaces. The methods employed in this work are those of rigorous mathematical research, aided by experimental computer simulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目是对数学模型的基础研究,该模型描述了具有随机不可预测性的不规则环境中的复杂相互作用,生长和运动。其目标是发现支配这些系统的一般数学定律。这些系统在小尺度和大尺度上表现出很大的不同。因此,了解小规模进化的不同规则如何导致不同的大规模系统行为是很重要的。这种数学研究可以阐明的现实世界现象包括车辆的运动、通信网络中的数据包、管道中的流体粒子、多孔介质中的流体传播、人口中的流行病传播以及流体中聚合物链的波动。实验室实验表明,这些数学模型捕捉物理现实的基本特征。 从长远来看,理解复杂的相互作用对科学和工程,从而对社会具有深远的影响。数学家、自然科学家、社会科学家和工程师都在同时深入地研究提案中所描述的数学系统。该项目为研究生提供了研究培训机会。 本项目研究随机介质中生长和运动的数学模型。例子包括第一次通过渗流,角增长模型,随机环境中的随机行走,定向聚合物模型和随机偏微分方程。这项工作的目标是数学上严格的描述这些模型的行为和强大的工具,他们的分析发展。具体目标包括规则性的限制形状,最佳路径的属性,如它们的长度,波动和几何特征,遍历属性,描述大规模的限制在变分公式和熵,和描述的概率分布的复杂随机几何对象,如树的测地线和竞争接口。 在这项工作中采用的方法是严格的数学研究,辅助实验计算机模拟。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometry of geodesics through Busemann measures in directed last-passage percolation
- DOI:10.4171/jems/1246
- 发表时间:2019-08
- 期刊:
- 影响因子:2.6
- 作者:Christopher Janjigian;F. Rassoul-Agha;T. Seppalainen
- 通讯作者:Christopher Janjigian;F. Rassoul-Agha;T. Seppalainen
Global structure of semi-infinite geodesics and competition interfaces in Brownian last-passage percolation
半无限测地线的全局结构和布朗最后通道渗流中的竞争界面
- DOI:10.2140/pmp.2023.4.667
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Seppäläinen, Timo;Sorensen, Evan
- 通讯作者:Sorensen, Evan
Geodesic length and shifted weights in first-passage percolation
- DOI:10.1090/cams/18
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Arjun Krishnan;F. Rassoul-Agha;T. Seppalainen
- 通讯作者:Arjun Krishnan;F. Rassoul-Agha;T. Seppalainen
Optimal-order exit point bounds in exponential last-passage percolation via the coupling technique
- DOI:10.2140/pmp.2023.4.609
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Elnur Emrah;Christopher Janjigian;T. Seppalainen
- 通讯作者:Elnur Emrah;Christopher Janjigian;T. Seppalainen
The stationary horizon and semi-infinite geodesics in the directed landscape
有向景观中的静止地平线和半无限测地线
- DOI:10.1214/23-aop1655
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Busani, Ofer;Seppäläinen, Timo;Sorensen, Evan
- 通讯作者:Sorensen, Evan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timo Seppalainen其他文献
Strong law of large numbers for the interface in ballistic deposition
- DOI:
10.1016/s0246-0203(00)00137-0 - 发表时间:
1999-06 - 期刊:
- 影响因子:1.5
- 作者:
Timo Seppalainen - 通讯作者:
Timo Seppalainen
Timo Seppalainen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timo Seppalainen', 18)}}的其他基金
Growth and Motion in a Random Medium
随机介质中的生长和运动
- 批准号:
1854619 - 财政年份:2019
- 资助金额:
$ 33.16万 - 项目类别:
Continuing Grant
Stochastic Systems with Complex Interactions and Random Environments
具有复杂相互作用和随机环境的随机系统
- 批准号:
1602846 - 财政年份:2016
- 资助金额:
$ 33.16万 - 项目类别:
Continuing Grant
Stochastic Systems with Complex Interactions and Random Environments
具有复杂相互作用和随机环境的随机系统
- 批准号:
1306777 - 财政年份:2013
- 资助金额:
$ 33.16万 - 项目类别:
Continuing Grant
Stochastic systems with complex interactions and random environments
具有复杂相互作用和随机环境的随机系统
- 批准号:
1003651 - 财政年份:2010
- 资助金额:
$ 33.16万 - 项目类别:
Continuing Grant
Stochastic systems with complex interactions and random environments
具有复杂相互作用和随机环境的随机系统
- 批准号:
0701091 - 财政年份:2007
- 资助金额:
$ 33.16万 - 项目类别:
Continuing Grant
Collaborative Research: Stochastic Interactions between Particles and Environments
合作研究:粒子与环境之间的随机相互作用
- 批准号:
0503650 - 财政年份:2005
- 资助金额:
$ 33.16万 - 项目类别:
Continuing Grant
Studies in Interacting Random Systems
相互作用随机系统的研究
- 批准号:
0402231 - 财政年份:2004
- 资助金额:
$ 33.16万 - 项目类别:
Standard Grant
Problems in Particle and Interface Models
粒子和界面模型中的问题
- 批准号:
0126775 - 财政年份:2001
- 资助金额:
$ 33.16万 - 项目类别:
Standard Grant
Limits and Deviations for Interacting Random Systems
相互作用随机系统的极限和偏差
- 批准号:
9801085 - 财政年份:1998
- 资助金额:
$ 33.16万 - 项目类别:
Standard Grant
相似海外基金
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2022
- 资助金额:
$ 33.16万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2021
- 资助金额:
$ 33.16万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2020
- 资助金额:
$ 33.16万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2019
- 资助金额:
$ 33.16万 - 项目类别:
Discovery Grants Program - Individual
Growth and Motion in a Random Medium
随机介质中的生长和运动
- 批准号:
1854619 - 财政年份:2019
- 资助金额:
$ 33.16万 - 项目类别:
Continuing Grant
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2018
- 资助金额:
$ 33.16万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Geometry of Random Sets and Pathwise Uniqueness for Stable-Branching Super Brownian Motion
稳定分支超布朗运动的随机集几何和路径唯一性分析
- 批准号:
489671-2016 - 财政年份:2018
- 资助金额:
$ 33.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis of Geometry of Random Sets and Pathwise Uniqueness for Stable-Branching Super Brownian Motion
稳定分支超布朗运动的随机集几何和路径唯一性分析
- 批准号:
489671-2016 - 财政年份:2017
- 资助金额:
$ 33.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2017
- 资助金额:
$ 33.16万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Geometry of Random Sets and Pathwise Uniqueness for Stable-Branching Super Brownian Motion
稳定分支超布朗运动的随机集几何和路径唯一性分析
- 批准号:
489671-2016 - 财政年份:2016
- 资助金额:
$ 33.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral