Collaborative Research: Stochastic Interactions between Particles and Environments
合作研究:粒子与环境之间的随机相互作用
基本信息
- 批准号:0503650
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-15 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is conducted on two fields of stochastic processes: random walk in random environment (RWRE) and interacting particle systems. In the former, a particle is driven by its interaction with the non-homogeneous random medium, while in the latter, the particle interacts with other particles present. In the general RWRE model an environment is a collection of transition probabilities between lattice sites, and it is chosen from some mixing shift-invariant distribution. On the other hand, a class of deposition models, introduced by the first PI, not only provides a unified framework for many well-known particle systems, but also gives a broader view on common phenomena arising in such systems. An object of vital importance in particle systems, in spirit similar to a random walker in random environment, is the so-called second class particle. The main goal of these fields is the understanding of the consequences of the randomness in the environment, or caused by particle-particle interactions, respectively. Among the fundamental questions one can consider are the existence of 0-1 laws, law of large numbers, central limit theorems, large deviations, etc. The two fields are very close in spirit and ideas, just as an example, non-reversibility is a major obstacle in both fields to common applications. Sometimes even direct connections can be established between the two fields through different representations of the same system. This research contains an instance where a surface growth process is shown to be the dual of a RWRE model, allowing the flow of results from the latter to the former. Dual connections within the field of interacting systems are known to be a powerful tool. Analogously, drawing parallels between interacting systems and RWRE's allows for the exchange of methods, insights, and results.Besides the fact that probabilistic intuition and techniques are often of great relevance to other areas of mathematics, this research has a direct impact on probability theory, combinatorics, statistical physics, and the theory of partial differential equations. The fields of random media and interacting systems also have various industrial, agricultural, sociological, and biological applications. Moreover the methods and problems in these fields are often easy to state, while the solutions involve sophisticated tools. This makes the subject appealing to graduate students and young researchers, generating more interest in probability theory.
本文研究了随机过程的两个领域:随机环境中的随机游动和相互作用粒子系统。在前者中,粒子通过与非均匀随机介质的相互作用而被驱动,而在后者中,粒子与存在的其他粒子相互作用。在一般的RWRE模型中,环境是格点之间的转移概率的集合,并且它是从一些混合移位不变分布中选择的。另一方面,一类沉积模型,介绍了由第一PI,不仅提供了一个统一的框架,许多著名的粒子系统,但也给出了一个更广泛的看法,在这样的系统中出现的常见现象。粒子系统中有一个非常重要的对象,在精神上类似于随机环境中的随机步行者,这就是所谓的第二类粒子。这些领域的主要目标是理解环境中随机性的后果,或分别由粒子-粒子相互作用引起的后果。其中的基本问题可以考虑的存在0 - 1法律,法律的大数,中央极限定理,大偏差等两个领域是非常接近的精神和思想,只是作为一个例子,不可逆性是一个主要障碍,在这两个领域的共同应用。有时甚至可以通过同一系统的不同表示在两个领域之间建立直接联系。本研究包含一个实例,其中表面生长过程被证明是RWRE模型的对偶,允许从后者到前者的结果流。交互系统领域内的对偶连接是一个强有力的工具。 类似地,在相互作用系统和RWRE之间画出相似之处,可以交换方法,见解和结果。除了概率直觉和技术通常与数学的其他领域非常相关的事实外,这项研究对概率论,组合数学,统计物理和偏微分方程理论都有直接影响。随机介质和相互作用系统的领域也有各种工业,农业,社会学和生物学应用。此外,这些领域的方法和问题往往很容易陈述,而解决方案涉及复杂的工具。这使得这个主题吸引了研究生和年轻的研究人员,从而对概率论产生了更多的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timo Seppalainen其他文献
Strong law of large numbers for the interface in ballistic deposition
- DOI:
10.1016/s0246-0203(00)00137-0 - 发表时间:
1999-06 - 期刊:
- 影响因子:1.5
- 作者:
Timo Seppalainen - 通讯作者:
Timo Seppalainen
Timo Seppalainen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timo Seppalainen', 18)}}的其他基金
Stochastic Systems with Complex Interactions and Random Environments
具有复杂相互作用和随机环境的随机系统
- 批准号:
1602846 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Stochastic Systems with Complex Interactions and Random Environments
具有复杂相互作用和随机环境的随机系统
- 批准号:
1306777 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Stochastic systems with complex interactions and random environments
具有复杂相互作用和随机环境的随机系统
- 批准号:
1003651 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Stochastic systems with complex interactions and random environments
具有复杂相互作用和随机环境的随机系统
- 批准号:
0701091 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Problems in Particle and Interface Models
粒子和界面模型中的问题
- 批准号:
0126775 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Limits and Deviations for Interacting Random Systems
相互作用随机系统的极限和偏差
- 批准号:
9801085 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337426 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
- 批准号:
2325184 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
- 批准号:
2226347 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
- 批准号:
2226348 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




