Addressing Rigor and Reproducibility in Heterogeneous, Thermal Catalysis
解决多相热催化的严谨性和重现性
基本信息
- 批准号:2152559
- 负责人:
- 金额:$ 5.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project supports a workshop addressing the rigor and reproducibility of research conducted in heterogeneous thermal catalysis. The workshop is led by Dr. Neil Schweitzer of Northwestern University, with co-organizers Rajamani Gounder (Purdue University), and Robert Rioux (Penn State University). Experts from academe, industry, U.S. funding agencies and national laboratories, and the international catalysis research community will convene in both virtual and in-person sessions to assess the state of catalysis research methodology and identify actionable opportunities for coordinating rigorous and reproducible practices across the broader catalysis research community. Participants include an inclusive and diverse group of attendees including students, early-career researchers, and senior-level technical experts. Both short- and long-term objectives will be addressed covering 5 topic areas: 1) Standardized reporting in literature/proposals, 2) Developing benchmarking standards, 3) Producing training media and workshops, 4) Establishing a database of experimental data, and 5) Forming a network of testing labs. The workshop features a novel three-phase series of virtual sessions that will surround an in-person session of roughly 70 participants to be held at the Big Ten (B1G) Conference Center in Rosemont, Illinois (July 21 and July 22, 2022). Products and outcomes of the workshop will first consist of a workshop report followed by one or more journal articles summarizing best practices that researchers can use to benchmark, validate, and reproduce data in specific sub-fields of thermal catalysis.Heterogeneous thermal catalysis has long served as the bedrock of fuels and chemicals manufacturing. Complexity and variability spanning the entire breadth of catalyst materials properties, synthesis methods, characterization techniques, and evaluation procedures, has focused attention on the need to establish community-accepted practices for ensuring high-quality, benchmarked, and reproducible data. In addition, urgency around the transition to clean energy and greenhouse gas reduction has incentivized interdisciplinary, convergent, and translational approaches to catalysis research in recent years. Research engineers and scientists with expertise cutting broadly across materials, chemical synthesis, interfacial science, spectroscopic methods, and methods of data science and computational simulation, all bring welcome perspectives to catalysis research, but often with little awareness of the complexity of catalytic systems, especially in the working environment. Thus, mechanisms are needed to improve rigor and reproducibility (R&R) in experimental measurements to ensure alignment of the broader research community with a common core of practices specific to the realization of high-quality catalysis research. Similarly, the field is moving rapidly toward computational and data-science driven catalyst design, but successful implementation of such predictive tools hinges on model training and validation rooted in rigorously obtained and reproducible experimental data bases benchmarked to common specifications. Following the in-person session, specific sub-groups of workshop leaders and participants will be formed to pursue additional projects, including the development of online training material and content reflecting the best practices in catalysis research to improve rigor and reproducibility, the creation and maintenance of a public database of catalysis data, and the implementation of testing laboratory facilities that can be used by researchers to benchmark or validate their data. Emphasis will be placed on including early-career researchers in all phases of the workshop, to build appreciation of best practices, while also providing recommendations to those engaged in setting standards and practices for review of both grant proposals and journal article submissions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目支持举办一次研讨会,讨论多相热催化研究的严谨性和重现性。研讨会由西北大学的Neil Schweitzer博士领导,联合组织者包括普渡大学的Rajamani Gounder和宾夕法尼亚州立大学的Robert Rioux。来自学术界、产业界、美国资助机构和国家实验室以及国际催化研究界的专家将召开虚拟和面对面会议,评估催化研究方法的现状,并确定可行的机会,在更广泛的催化研究界协调严谨和可重复的实践。参与者包括一群包容和多样化的参与者,包括学生、职业早期研究人员和高级技术专家。短期和长期目标将涉及5个主题领域:1)文献/提案中的标准化报告;2)制定基准标准;3)制作培训媒体和讲习班;4)建立实验数据数据库;5)形成测试实验室网络。研讨会的特色是一系列新颖的三阶段虚拟会议,将围绕着约70名参与者的面对面会议,将在伊利诺伊州罗斯蒙特的十大(B1G)会议中心举行(2022年7月21日和7月22日)。研讨会的产品和成果首先将由研讨会报告和一篇或多篇期刊文章组成,这些文章总结了研究人员可以用来对热催化特定子领域的数据进行基准测试、验证和复制的最佳实践。多相热催化长期以来一直是燃料和化学品制造的基础。催化剂材料性质、合成方法、表征技术和评估程序的整个范围的复杂性和可变性,使人们关注建立社区接受的做法的必要性,以确保高质量、基准和可重复的数据。此外,近年来,围绕向清洁能源和温室气体减排过渡的紧迫性促使人们采取跨学科、趋同和转化的方法进行催化研究。研究工程师和科学家在材料、化学合成、界面科学、光谱方法以及数据科学和计算模拟方法方面拥有广泛的专业知识,他们都为催化研究带来了可喜的前景,但他们往往对催化系统的复杂性知之甚少,特别是在工作环境中。因此,需要机制来提高实验测量的严密性和重复性(R&;R),以确保更广泛的研究界与实现高质量催化研究的共同核心实践保持一致。同样,该领域正在向计算和数据科学驱动的催化剂设计快速发展,但此类预测工具的成功实施取决于模型培训和验证,这些模型和验证植根于严格获得的、可重复使用的、以通用规范为基准的实验数据库。在面对面会议之后,将成立讲习班领导人和与会者的具体分组,以开展其他项目,包括开发反映催化研究最佳做法的在线培训材料和内容,以提高严密性和重复性,创建和维护催化数据公共数据库,以及落实可供研究人员用来对其数据进行基准或验证的测试实验室设施。重点是在研讨会的所有阶段包括早期职业研究人员,以建立对最佳实践的欣赏,同时也向那些参与制定标准和实践的人提供建议,以审查拨款提案和期刊论文提交。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Schweitzer其他文献
Neil Schweitzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Training Biomedical Research Teams for Rigor and Reproducibility in Data Science
培训生物医学研究团队以确保数据科学的严谨性和可重复性
- 批准号:
10723223 - 财政年份:2023
- 资助金额:
$ 5.07万 - 项目类别:
SCISIPBIO: Maximizing rigor and reproducibility when considering Sex as a Biological Variable in research
SCISIPBIO:在研究中将性别视为生物变量时最大限度地提高严谨性和可重复性
- 批准号:
10786440 - 财政年份:2023
- 资助金额:
$ 5.07万 - 项目类别:
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10225630 - 财政年份:2020
- 资助金额:
$ 5.07万 - 项目类别:
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10441310 - 财政年份:2020
- 资助金额:
$ 5.07万 - 项目类别:
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10653020 - 财政年份:2020
- 资助金额:
$ 5.07万 - 项目类别:
Addressing Sex as a Biological Variable in Preclinical Pharmacology and Neuroscience Research: Accounting for Neglected Factors and Applying Practical Solutions to Enhance Rigor and Reproducibility
将性别作为临床前药理学和神经科学研究中的生物变量:考虑被忽视的因素并应用实用的解决方案来提高严谨性和可重复性
- 批准号:
10197959 - 财政年份:2019
- 资助金额:
$ 5.07万 - 项目类别:
An EHR Core Research (ECR) Data Resource Hub to catalyze culture change and community building for improving rigor and reproducibility in STEM education research
EHR 核心研究 (ECR) 数据资源中心,促进文化变革和社区建设,以提高 STEM 教育研究的严谨性和可重复性
- 批准号:
1937698 - 财政年份:2019
- 资助金额:
$ 5.07万 - 项目类别:
Standard Grant
Equipment request to increase scientific rigor and reproducibility
提高科学严谨性和可重复性的设备要求
- 批准号:
10060295 - 财政年份:2018
- 资助金额:
$ 5.07万 - 项目类别:
NRT-IGE: Reproducibility and Rigor in Quantitative Biology: A Hands-on Approach
NRT-IGE:定量生物学的再现性和严谨性:实践方法
- 批准号:
1734818 - 财政年份:2017
- 资助金额:
$ 5.07万 - 项目类别:
Standard Grant
Modular and Project Based Training to Enhance Rigor and Reproducibility in Research for Diverse Biomedical Careers
模块化和基于项目的培训,以提高多样化生物医学职业研究的严谨性和可重复性
- 批准号:
9900317 - 财政年份:2002
- 资助金额:
$ 5.07万 - 项目类别:














{{item.name}}会员




