ECCS-EPSRC: Towards Quantum-assisted Reconfigurable Indoor Wireless Environments
ECCS-EPSRC:迈向量子辅助可重构室内无线环境
基本信息
- 批准号:2152617
- 负责人:
- 金额:$ 35.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Indoor scenario has emerged as one of the most congested, contested, and competitive wireless environments. With the need of resilient Internet of Everything (IoE) and Fourth Industrial Revolution (Industry 4.0) infrastructures, thousands of devices are expected to be connected wirelessly within a confined indoor environment, interfering with each other and contending for limited electromagnetic spectrum. The combination of growing demand for data traffic, confined space, and congested spectrum creates a major technical challenge and opportunities for innovation. The research objective of this project is to investigate new fundamental communication models and schemes, which dynamically program and customize indoor wireless propagation environments for enhanced wireless communications. This objective is attained by integrating the physics of wave-chaotic dynamics, the mathematics of random matrix theory, the engineering of reconfigurable electromagnetic surfaces, and the computing power of quantum hardware. The success will open new pathways from compensation to exploitation of chaos and randomness towards more energy-efficient and intelligent indoor wireless communications. The research has the potential to support a variety of highly desirable functionalities for beyond-5G/6G indoor wireless infrastructure, such as maximum signal deposition at desired locations, energy and bandwidth efficient indoor wireless communications, accurate and reliable indoor positioning. While the project is focused on electrodynamics, the methodology developed by this research can be applied to many other related fields including acoustics, quantum mesoscopic transport, imaging in complex media, and light scattering in disordered media. Indoor wireless is qualitatively different than outdoor wireless. The inherently complex, dynamic interaction between wireless devices and radio environment presents its own unique challenges. This project will investigate a physics-oriented, mathematically tractable computational framework that can enable statistical design and optimization of deliberate perturbations to dynamically program and customize indoor wireless propagation environments. The perturbative force is realized by the emerging reconfigurable intelligent surfaces (RIS) technology. The optimization procedure operates on the physical degrees of freedom that are accessible in the prescribed perturbation. To enable an ultra-fast optimization adapting to dynamic wireless environments, the research will leverage the power of quantum adiabatic optimizer to overcome the computational complexity. The proposed research consists of three components: (1) a rigorous mathematical model for the statistical analysis of wave physics in complex confined indoor environment; (2) the configuration and control of wave chaos using the RIS technology; (3) quantum-enabled, ultra-fast large-scale optimization of RIS configuration. The proposal’s vision is that the physics of complex systems fused with quantum computing will constitute a game changer for the modeling and design of large network of RIS devices cooperating to transform indoor radio environments into a resource for future wireless networks.This project was submitted through the NSF Engineering - UKRI Engineering and Physical Sciences Research Council Lead Agency Opportunity (ENG-EPSRC), a collaborative partnership between the National Science Foundation and the Engineering and Physical Sciences Research Council (EPSRC) of United Kingdom Research and Innovation (UKRI).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
室内场景已经成为最拥挤、最有争议和竞争最激烈的无线环境之一。随着对弹性万物互联(IoE)和第四次工业革命(工业4.0)基础设施的需求,预计成千上万的设备将在有限的室内环境中无线连接,相互干扰并争夺有限的电磁频谱。不断增长的数据流量需求、有限的空间和拥挤的频谱相结合,为创新带来了重大的技术挑战和机遇。本项目的研究目标是研究新的基本通信模型和方案,动态规划和定制室内无线传播环境,以增强无线通信。这一目标是通过整合波混沌动力学的物理学、随机矩阵理论的数学、可重构电磁表面的工程学以及量子硬件的计算能力来实现的。这一成功将为更节能、更智能的室内无线通信开辟新的途径,从补偿到利用混沌和随机性。该研究有可能支持5G/6 G以上室内无线基础设施的各种非常理想的功能,例如在所需位置的最大信号沉积,能量和带宽高效的室内无线通信,准确可靠的室内定位。虽然该项目的重点是电动力学,但这项研究开发的方法可以应用于许多其他相关领域,包括声学,量子介观传输,复杂介质中的成像以及无序介质中的光散射。室内无线与室外无线有质的不同。无线设备和无线电环境之间固有的复杂的动态交互提出了其自身独特的挑战。该项目将研究一个面向物理的,数学上易于处理的计算框架,可以实现故意扰动的统计设计和优化,以动态编程和定制室内无线传播环境。微扰力是通过新兴的可重构智能表面(RIS)技术实现的。优化过程在规定的扰动中可访问的物理自由度上操作。为了实现适应动态无线环境的超快速优化,该研究将利用量子绝热优化器的力量来克服计算复杂性。该研究包括三个部分:(1)复杂受限室内环境中波动物理统计分析的严格数学模型;(2)使用RIS技术配置和控制波动混沌;(3)RIS配置的量子启用,超快速大规模优化。该提案的愿景是,与量子计算融合的复杂系统的物理学将构成RIS设备合作将室内无线电环境转变为未来无线网络资源的大型网络建模和设计的游戏规则改变者。该项目通过NSF工程- UKRI工程和物理科学研究理事会牵头机构机会提交(ENG-EPSRC),国家科学基金会与英国研究与创新(UKRI)工程与物理科学研究理事会(EPSRC)之间的合作伙伴关系该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Hybrid Classical-Quantum Computing Framework for RIS-assisted Wireless Network
- DOI:10.1109/nemo56117.2023.10202166
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:C. Ross;G. Gradoni;Z. Peng
- 通讯作者:C. Ross;G. Gradoni;Z. Peng
Quantum-Assisted Combinatorial Optimization for Reconfigurable Intelligent Surfaces in Smart Electromagnetic Environments
- DOI:10.1109/tap.2023.3298134
- 发表时间:2024-01-01
- 期刊:
- 影响因子:5.7
- 作者:Lim,Qi Jian;Ross,Charles;Peng,Zhen
- 通讯作者:Peng,Zhen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Peng其他文献
Indoor particulate matter pollution and smoking control in consulting rooms and wards of a hospital in Northern China
北方某医院诊室及病房室内颗粒物污染及吸烟控制
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.9
- 作者:
Shuya Zhang;Kexin Song;Qichao Ban;Puyue Gong;Ruisi Li;Zhen Peng - 通讯作者:
Zhen Peng
The impact of multi-species surface chemical observations assimilation on the air quality forecasts in China
多物种地表化学观测同化对中国空气质量预报的影响
- DOI:
10.5194/acp-2018-768 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Zhen Peng;Lili Lei;Zhiquan Liu;Jianning Sun;Aijun Ding;Junmei Ban;Dan Chen;Xingxia Kou;Kekuan Chu - 通讯作者:
Kekuan Chu
Structural gradient of plastic Fe50Ni30P13C7 bulk metallic glass
塑料Fe50Ni30P13C7大块金属玻璃的结构梯度
- DOI:
10.1016/j.jallcom.2019.02.208 - 发表时间:
2019-06 - 期刊:
- 影响因子:6.2
- 作者:
Jili Wu;Lin Xu;Zhen Peng - 通讯作者:
Zhen Peng
Fluorescent Determination of Trace Calcium in Water from High-Parameter Power Plant Based on a Porphyrin Derivative
基于卟啉衍生物的荧光测定高参数电厂水中痕量钙
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
ZhongCao;Pu-Ni Zeng;Li-Jing Zhou;Zhen Peng;Jing-Lin Hu;Gang Su - 通讯作者:
Gang Su
Enrichment effect of coal and quartz particles in gas-solid fluidized bed with applied electrical field
外加电场气固流化床中煤和石英颗粒的富集效应
- DOI:
10.1016/j.powtec.2019.06.046 - 发表时间:
2019-09 - 期刊:
- 影响因子:5.2
- 作者:
Haifeng Wang;Xuejie Bai;Zhen Peng;Xiaolu Zhao;Jinshan Yang;Shuai Wang;Yaqun He - 通讯作者:
Yaqun He
Zhen Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Peng', 18)}}的其他基金
CAREER: Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos
职业:面向物理的整合有序与混沌的统计波分析
- 批准号:
1953000 - 财政年份:2019
- 资助金额:
$ 35.8万 - 项目类别:
Standard Grant
CAREER: Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos
职业:面向物理的整合有序与混沌的统计波分析
- 批准号:
1750839 - 财政年份:2018
- 资助金额:
$ 35.8万 - 项目类别:
Standard Grant
AF: Small: Geometry-aware Integral Equation Solvers for High-fidelity Electromagnetic Modeling and Simulation
AF:小型:用于高保真电磁建模和仿真的几何感知积分方程求解器
- 批准号:
1526605 - 财政年份:2015
- 资助金额:
$ 35.8万 - 项目类别:
Standard Grant
相似海外基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
- 批准号:
EP/Y032489/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
- 批准号:
EP/Z531182/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
- 批准号:
EP/Y024052/1 - 财政年份:2024
- 资助金额:
$ 35.8万 - 项目类别:
Research Grant