CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
基本信息
- 批准号:2152679
- 负责人:
- 金额:$ 18.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award will contribute to national prosperity and economic welfare by developing tools to support the efficient and effective design of modern engineering systems such as smart factories and smart autonomous systems for material handling. A major challenge in designing such systems is that their performance can change abruptly with small changes in design variables, creating discontinuous design responses. This grant will develop efficient surrogate modeling methods to predict design performance in the presence of such discontinuities which can then be exploited in design optimization. This work will facilitate the solution of complex engineering design problems and will be evaluated in the design of a smart manufacturing system for carbon nanotubes, and the design of automated material handling systems. The award will also contribute to the development of a data science-capable workforce by providing multidisciplinary research, training, and international collaboration opportunities for K-12, undergraduate, and graduate students. The research team will broadly disseminate their research findings and share data and the resulting software packages to the data science and systems engineering community.This research will make substantial contributions to the areas of surrogate modeling, sequential design, active learning, system design, and advanced manufacturing. System performance is modeled as a piece-wise continuous function of design variables, motivating local Gaussian process (GP) surrogate modeling. The approach accommodates regime changes around a prediction location, segmenting local data based on the estimated partition(s). Only the local data belonging to the same regime as a prediction location affects the model prediction. Research activities will explore two ideas: (1) local GP modeling with local data selection; and (2) smoother alternatives that augment design variables with probabilistic regime estimates. A sequential design approach to optimize data acquisition plans for training the new surrogate models will also be investigated. The resulting new meta-models and sequential design scheme will be validated using design problems in carbon nanotube synthesis and smart material handling systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将通过开发工具来支持现代工程系统(如智能工厂和智能自动化物料处理系统)的高效设计,为国家繁荣和经济福利做出贡献。在设计这样的系统的一个主要挑战是,它们的性能可能会突然改变设计变量的小变化,创造不连续的设计响应。 这项拨款将开发有效的替代建模方法,以预测存在这种不连续性的设计性能,然后可以在设计优化中加以利用。这项工作将有助于解决复杂的工程设计问题,并将在碳纳米管智能制造系统的设计和自动化材料处理系统的设计中进行评估。该奖项还将通过为K-12,本科生和研究生提供多学科研究,培训和国际合作机会,促进数据科学人才队伍的发展。该研究团队将广泛传播他们的研究成果,并与数据科学和系统工程界分享数据和由此产生的软件包,这项研究将在替代建模、顺序设计、主动学习、系统设计和先进制造等领域做出重大贡献。系统性能被建模为设计变量的分段连续函数,激励局部高斯过程(GP)代理建模。该方法适应预测位置周围的状态变化,基于估计的分区分割局部数据。只有属于与预测位置相同的状态的本地数据才影响模型预测。研究活动将探索两个想法:(1)本地GP建模与本地数据选择;(2)更平滑的替代方案,增加设计变量与概率政权估计。一个顺序设计的方法来优化数据采集计划,训练新的代理模型也将进行调查。 由此产生的新的元模型和顺序设计方案将使用碳纳米管合成和智能材料处理系统中的设计问题进行验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Gramacy其他文献
Robert Gramacy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Gramacy', 18)}}的其他基金
Collaborative research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems
合作研究:随机系统建模和控制的高斯过程框架
- 批准号:
1821258 - 财政年份:2018
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
- 批准号:
1849794 - 财政年份:2018
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Local Approximation for Large Scale Spatial Modeling
合作研究:CDS
- 批准号:
1621746 - 财政年份:2016
- 资助金额:
$ 18.14万 - 项目类别:
Continuing Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
- 批准号:
1521702 - 财政年份:2015
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 18.14万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant