CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
基本信息
- 批准号:1521702
- 负责人:
- 金额:$ 22.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to build new cross-disciplinary algorithms that blend concepts from applied probability, control, and statistical modeling to tackle computational challenges in large-scale optimization. Creation of such new links is another step in building a next-generation of high-performance algorithms needed to meet the increasingly complex problems arising in applications as diverse as finance, energy storage and security, and the management of epidemics. The project's research agenda is grounded in two concrete application areas where it is crucial to tackle industrial-grade high-fidelity models. One is the efficient management of cycled commodity assets, including gas storage, battery storage, or fleets of power plants as energy infrastructure is transitioned to the "smart grid." A second is timely and effective response to unfolding infectious disease outbreaks, notably influenza. Both present major cross-disciplinary challenges. We see vast potential for algorithms which expand capabilities for aspects of quantitative control, and thus provide higher quality information to decision makers. Our goal is to produce a smarter, more targeted, use of random numbers in a new wave of lean stochastic solvers, and subsequently an expansion of the size of problems that can be tackled with existing computing capabilities. The educational core of the project contributes to inter-disciplinary training in mathematical sciences across undergraduate, graduate and postdoctoral levels. The collaborative initiatives will also enhance the research infrastructure through exchange of ideas between the two campuses (Univesrity of California-Santa Barbara and University of Chicago) and communities of statisticians, operations researchers and engineers. All algorithms would be documented and publicly released to the wider scientific community. Deployment of simulation based schemes remains key for control of stochastic systems that require realistic high-fidelity representations. This project will develop new Monte Carlo algorithms for a class of stochastic control problems by erecting novel bridges between dynamic control and methods of sequential design and statistical learning. Our research agenda hinges on sequential, active learning of optimal action sets, so that the algorithms adaptively allocate computing resources to better enhance fidelity of the approximated control strategies. Such targeted use of Monte Carlo simulations links approximate dynamic programming with response surface modeling, marrying two so-far disparate areas of applied mathematics and statistics. The resulting adaptive schemes will facilitate orders of magnitude savings in simulation budgets, expanding the frontier for predictive modeling and decision making under uncertainty. The proposed research will advance the theory of algorithms for dynamic control over massive multi-dimensional state spaces, where curses of dimensionality are unavoidable. Simultaneously, integration of the statistical and computational theories in this direction will open new lines of interdisciplinary quantitative research. Through enhancing knowledge discovery in large-scale control settings, the projects will facilitate transition to practice in novel contexts. With the aim of reaching out to diverse users from the mathematical, biological, physical and engineering sciences, producing general purpose open-source software via R packages is a primary deliverable of the project, and will be supplemented by a database of case studies.
该研究项目旨在构建新的跨学科算法,融合应用概率,控制和统计建模的概念,以解决大规模优化中的计算挑战。创建这样的新链接是构建下一代高性能算法的又一步,这些算法需要满足金融、能源存储和安全以及流行病管理等各种应用中出现的日益复杂的问题。该项目的研究议程基于两个具体的应用领域,其中解决工业级高保真模型至关重要。一个是循环商品资产的有效管理,包括天然气储存、电池储存或发电厂车队,因为能源基础设施正在向“智能电网”过渡。“第二是及时有效地应对正在爆发的传染病疫情,特别是流感。两者都提出了重大的跨学科挑战。我们看到了算法的巨大潜力,这些算法扩展了定量控制方面的能力,从而为决策者提供了更高质量的信息。我们的目标是在新一波的精益随机求解器中产生更智能,更有针对性的随机数使用,并随后扩大现有计算能力可以解决的问题的规模。该项目的教育核心有助于跨本科,研究生和博士后水平的数学科学的跨学科培训。合作举措还将通过两个校区(加利福尼亚大学圣巴巴拉分校和芝加哥)以及统计学家、业务研究人员和工程师社区之间的思想交流,加强研究基础设施。所有算法都将被记录在案,并向更广泛的科学界公开发布。部署基于仿真的计划仍然是控制随机系统,需要现实的高保真度表示的关键。本项目将通过在动态控制与顺序设计和统计学习方法之间架起新的桥梁,为一类随机控制问题开发新的蒙特卡罗算法。我们的研究议程取决于顺序,主动学习的最优动作集,使算法自适应地分配计算资源,以更好地提高近似控制策略的保真度。这样有针对性地使用蒙特卡罗模拟链接近似动态规划与响应面建模,结合两个迄今为止完全不同的应用数学和统计学领域。由此产生的自适应方案将有助于节省模拟预算的数量级,扩大预测建模和决策的不确定性的前沿。本文的研究成果将推动大规模多维状态空间的动态控制算法理论的发展,而多维状态空间的维数灾难是不可避免的。同时,统计和计算理论在这一方向的整合将开辟跨学科定量研究的新领域。通过加强大规模控制环境中的知识发现,这些项目将促进在新环境中向实践的过渡。为了接触来自数学、生物、物理和工程科学的不同用户,通过R软件包制作通用开放源码软件是该项目的主要交付成果,并将辅之以案例研究数据库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Gramacy其他文献
Robert Gramacy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Gramacy', 18)}}的其他基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2152679 - 财政年份:2022
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
Collaborative research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems
合作研究:随机系统建模和控制的高斯过程框架
- 批准号:
1821258 - 财政年份:2018
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
- 批准号:
1849794 - 财政年份:2018
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Local Approximation for Large Scale Spatial Modeling
合作研究:CDS
- 批准号:
1621746 - 财政年份:2016
- 资助金额:
$ 22.85万 - 项目类别:
Continuing Grant
相似国自然基金
靶向Pin1改善MSS型结直肠癌免疫抑制微环境的分子机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Eeyarestatin I通过诱导MSS型结直肠癌
谷胱甘肽耗竭促进免疫原性铁死亡改善
免疫检查点疗法应答的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
鼠李糖乳杆菌通过诱导巨噬细胞M1极化改善MSS型结直肠癌免疫应答的机制研究
- 批准号:QN25H160091
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
电针激活β-arrestin 1/IFN通路促进“冷-热”免疫表型转化协同IDO抑制剂治疗MSS肠癌的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
基于糖醛酸离子交联的枸杞多糖凝胶用于口服结肠靶向递药抗
MSS 型结肠癌研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
千金藤素通过自噬损伤导致的免疫原性细胞死亡促进 anti-PD1 治疗MSS 型结直肠癌的疗效与机制研究
- 批准号:
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
调控pMMR/MSS型直肠癌放疗联合ICIs治疗响应差异的免疫微环境机制研究
- 批准号:2024Y9290
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
AIM2 炎症小体调控 T 细胞功能及互作在促进 MSS 型直肠癌放疗联合 PD-1 抑
制剂治疗敏感性中的作用及机制研究
- 批准号:24ZR1413300
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSS型结直肠癌通过抑制GSDMB依赖的细胞焦亡介导免疫治疗耐受的机制研究
- 批准号:2024Y9636
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
电针激活β-arrestin 1/IFN通路促进"冷-热"免疫表型转化协同IDO抑制剂治疗MSS肠癌的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2245380 - 财政年份:2023
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2245381 - 财政年份:2023
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2401020 - 财政年份:2023
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Deep Network Compression and Continual Learning: Theory and Application
合作研究:CDS
- 批准号:
2053448 - 财政年份:2021
- 资助金额:
$ 22.85万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E-MSS: Deep Network Compression and Continual Learning: Theory and Application
合作研究:CDS
- 批准号:
2053480 - 财政年份:2021
- 资助金额:
$ 22.85万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854703 - 财政年份:2019
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854748 - 财政年份:2019
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854683 - 财政年份:2019
- 资助金额:
$ 22.85万 - 项目类别:
Continuing Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
- 批准号:
1849794 - 财政年份:2018
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Local Approximation for Large Scale Spatial Modeling
合作研究:CDS
- 批准号:
1739097 - 财政年份:2017
- 资助金额:
$ 22.85万 - 项目类别:
Standard Grant














{{item.name}}会员




