Learning to Reason in Reinforcement Learning
在强化学习中学习推理
基本信息
- 批准号:DP240103278
- 负责人:
- 金额:$ 37.67万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2024
- 资助国家:澳大利亚
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep Reinforcement Learning (RL) uses deep neural networks to represent and learn optimal decision-making policies for intelligent agents in complex environments. However, most RL approaches require millions of episodes to converge to good policies, making it difficult for RL to be applied in real-world scenarios taking significant resources. This project aims to equip RL with capabilities such as counterfactual reasoning and outcome anticipation to significantly reduce the number of interactions required, improve generalisation, and provide the agent with the capability to consider the cause-effects. These improvements would narrow the gap between AI and human capabilities and broaden the adoption of RL in real-world applications.
深度强化学习(RL)使用深度神经网络来表示和学习复杂环境中智能代理的最佳决策策略。然而,大多数强化学习方法需要数百万个事件才能收敛到好的策略,这使得强化学习很难应用于需要大量资源的现实场景。该项目旨在为RL配备反事实推理和结果预测等功能,以显着减少所需的交互次数,提高泛化能力,并为代理提供考虑因果关系的能力。这些改进将缩小人工智能和人类能力之间的差距,并扩大RL在现实世界应用中的采用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr Ehsan Abbasnejad其他文献
Dr Ehsan Abbasnejad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of the Anti-Realistic Interpretation of Kant's Critique of Pure Reason
康德纯粹理性批判的反实在论解释的发展
- 批准号:
23K00018 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reading to Reason in Science (RtRiS): Teaching scientific processes through reading-to-learn in undergraduate biology lecture-based courses
科学推理 (RtRiS):通过在本科生物讲座课程中从阅读中学习来教授科学过程
- 批准号:
2235378 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
Primary Care Teams Capacity Estimator (CapEs): Synthesizing evidence and developing the CapEs simulation software to support Canadian primary care policy makers and healthcare planners better reason about primary care team capacity in a time of crisis.
初级保健团队能力估算器 (CapEs):综合证据并开发 CapEs 模拟软件,以支持加拿大初级保健政策制定者和医疗保健规划者更好地推断危机时期初级保健团队的能力。
- 批准号:
475092 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Operating Grants
The dual strategy model of reason: Integrating counterexample and probabilistic reasoning
推理的双重策略模型:反例推理与概率推理的结合
- 批准号:
RGPIN-2022-03310 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Discovery Grants Program - Individual
Right tree, right place, right reason: developing a sustainable urban forest
正确的树、正确的地点、正确的理由:发展可持续的城市森林
- 批准号:
NE/X000443/1 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Research Grant
Learning to reason from uncalibrated wide angle images
学习从未经校准的广角图像进行推理
- 批准号:
567654-2021 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Alliance Grants
"What does that animal eat?": The role of overhypotheses in how children and adults learn and reason about real-world categories
“那只动物吃什么?”:过度假设在儿童和成人如何学习和推理现实世界类别中的作用
- 批准号:
DGECR-2022-00257 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Discovery Launch Supplement
Reason and Religion in Ottoman Syria
奥斯曼叙利亚的理性与宗教
- 批准号:
AH/W006006/1 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Fellowship
Right tree, right place, right reason: understanding species- specific benefits and disbenefits of urban trees
正确的树、正确的地点、正确的理由:了解城市树木特定物种的好处和坏处
- 批准号:
2744612 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Studentship
"What does that animal eat?": The role of overhypotheses in how children and adults learn and reason about real-world categories
“那只动物吃什么?”:过度假设在儿童和成人如何学习和推理现实世界类别中的作用
- 批准号:
RGPIN-2022-03495 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Discovery Grants Program - Individual