CDS&E: Rigorous formulas for industrial supercritical-fluid mixture properties via systematic evaluation of molecular virial coefficients, and methods to expand their applicati

CDS

基本信息

  • 批准号:
    2152946
  • 负责人:
  • 金额:
    $ 36.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Understanding material properties is vital to technological development: to design, control, or optimize a device or manufacturing process, how that physical object or material will behave when heat or mechanical forces are applied to it must be understood. This behavior is governed by the thermophysical properties of the material. While these properties generally can be measured experimentally, such an approach is typically found to be impractical due to the large number of variables involved. To remedy this, scientists and engineers rely on mathematical models to predict material properties by fitting physically based models to available data so that the thermophysical properties at conditions outside the values of the measured data can be computed. While useful, this approach can be limited in its predictive capabilities by a lack of validation data. A better approach would be based on computing material properties from molecular considerations using models describing how the molecules that make up the material interact. Developing accurate descriptions of molecular dynamics, however, is challenging, as is the interpretation of these model predictions at the macroscopic scale. In response to these limitations, this research program will expand upon a rigorous but neglected approach to the computation of thermophysical constants (virial coefficients) that model thermodynamic behavior deviations from idealized representations, allowing for the prediction of properties under realistic situations. This will be accomplished by using state-of-the-art molecular-level simulations to identify virial coefficient values for 31 representative chemical compounds that span a range of important chemical processing and energy applications. This research has the capability to transform the thinking of molecular-model developers on how they formulate and test their methods and models as well as property-model developers on how they formulate and parameterize models to match thermodynamic data. The research team is developing and disseminating computational tools that can assist other developers to perform their own calculations of virial coefficients, thereby broadening the scope of mixture data well beyond what is targeted in this project. Positive impact also will be made through training of students, with a focus on underrepresented groups, community outreach, and dissemination of educational materials.In this project, several avenues will be pursued to bring recent advances in computational cluster-integral methods toward practical applications. First, the research team will engage in a systematic effort to evaluate temperature-dependent virial coefficients from empirical and first-principles intermolecular potentials for a collection of 31 species, and all possible mixtures formed from them. These results will form a database that will be a publicly accessible resource of hundreds of thousands of coefficients that can be used to compute all thermodynamic properties of these mixtures in the vapor and supercritical-fluid phases. Second, the coefficients will be evaluated through a comprehensive comparison to available experimental data from the literature. Such data encompass reported virial coefficients, volumetric properties, and thermal properties of supercritical mixtures. This comparison is valuable in assessing the quality of the molecular models and to pinpoint their weaknesses. The database then will be used to further study the behavior of mixtures including: (a) how knowledge of critical-point singularities in mixtures can be used to accelerate convergence of the virial series; and (b) studying the Joule-Thomson effect in mixtures. Finally, the feasibility of applying these coefficients toward parameterization of thermodynamic models used widely in engineering practice will be investigated to broaden the range of application of these data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解材料特性对技术发展至关重要:为了设计、控制或优化设备或制造过程,必须了解当热或机械力施加到物理对象或材料上时,该物理对象或材料将如何表现。这种行为是由材料的热物理性质决定的。虽然这些特性通常可以通过实验测量,但由于涉及大量变量,通常发现这种方法是不切实际的。为了解决这个问题,科学家和工程师依靠数学模型来预测材料特性,方法是将基于物理的模型拟合到可用数据中,以便计算出测量数据值之外的条件下的热物理特性。虽然有用,但这种方法可能因缺乏验证数据而限制其预测能力。一个更好的方法是基于从分子考虑计算材料特性,使用模型描述组成材料的分子如何相互作用。然而,开发分子动力学的准确描述是具有挑战性的,因为在宏观尺度上解释这些模型预测。为了应对这些限制,本研究计划将扩展到一个严格的,但被忽视的方法来计算热物理常数(维里系数),模型热力学行为偏离理想化的表示,允许在现实情况下的属性预测。这将通过使用最先进的分子水平模拟来确定31种代表性化合物的维里系数值来实现,这些化合物涵盖了一系列重要的化学加工和能源应用。这项研究有能力改变分子模型开发人员如何制定和测试他们的方法和模型以及属性模型开发人员如何制定和参数化模型以匹配热力学数据的思维。该研究小组正在开发和传播计算工具,可以帮助其他开发人员执行他们自己的维里系数计算,从而扩大混合物数据的范围,远远超出本项目的目标。此外,还将通过对学生进行培训,重点关注代表性不足的群体、社区外展和教育材料的传播,产生积极的影响。在本项目中,将通过几种途径将计算团簇积分方法的最新进展推向实际应用。首先,研究小组将进行系统的努力,从经验和第一性原理分子间势能中评估31种物种的温度依赖性维里系数,以及由它们形成的所有可能的混合物。这些结果将形成一个数据库,该数据库将是一个公开访问的资源,其中包含数十万个系数,可用于计算这些混合物在汽相和超临界流体相中的所有热力学性质。其次,将通过与文献中现有实验数据的全面比较来评估系数。这些数据包括超临界混合物的维里系数、体积性质和热性质。这种比较在评估分子模型的质量和找出它们的弱点方面是有价值的。然后,该数据库将用于进一步研究混合物的行为,包括:(a)如何在混合物中的临界点奇点的知识可以用来加速维里级数的收敛;(B)研究混合物中的焦耳-汤姆逊效应。最后,将这些系数应用于工程实践中广泛使用的热力学模型的参数化的可行性将被调查,以扩大这些数据的应用范围。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Origins of the Failure of the Activity Virial Series
维里系列活动失败的根源
Virial equation of state as a new frontier for computational chemistry
维里状态方程作为计算化学的新领域
  • DOI:
    10.1063/5.0113730
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schultz, Andrew J.;Kofke, David A.
  • 通讯作者:
    Kofke, David A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Kofke其他文献

Machine Learning for Generating and Analyzing Thermophysical Data: Where We Are and Where We’re Going
用于生成和分析热物理数据的机器学习:我们在哪里以及我们要去哪里

David Kofke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Kofke', 18)}}的其他基金

SI2-SSE: Infrastructure Enabling Broad Adoption of New Methods That Yield Orders-of-Magnitude Speedup of Molecular Simulation Averaging
SI2-SSE:基础设施支持广泛采用新方法,使分子模拟平均速度提高几个数量级
  • 批准号:
    1739145
  • 财政年份:
    2017
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Standard Grant
CDS&E: Development and application of cluster-integral methods for dispersions and complex solutions
CDS
  • 批准号:
    1464581
  • 财政年份:
    2015
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Standard Grant
UNS: Detailed molecular-thermodynamic methods for high-precision calculation of condensation, criticality, and supercritical behaviors of fluids and fluid mixtures
UNS:用于高精度计算流体和流体混合物的冷凝、临界和超临界行为的详细分子热力学方法
  • 批准号:
    1510017
  • 财政年份:
    2015
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Standard Grant
CDI Type II: New cyber-enabled strategies to realize the promise of quantum chemistry as a far-reaching tool for engineering applications
CDI II 型:新的网络支持策略,以实现量子化学作为工程应用的深远工具的承诺
  • 批准号:
    1027963
  • 财政年份:
    2010
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Standard Grant
Modeling of fluids and interfaces via synthesis of integral equations and Mayer-sampling cluster integral calculations
通过综合积分方程和迈耶采样簇积分计算对流体和界面进行建模
  • 批准号:
    0854340
  • 财政年份:
    2009
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Continuing Grant
A molecular simulation module-development community
分子模拟模块开发社区
  • 批准号:
    0618521
  • 财政年份:
    2006
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Cyberinfrastructure for Phase-Space Mapping -- Free Energies, Phase Equilibria and Transition Paths
合作研究:相空间映射的网络基础设施——自由能、相平衡和过渡路径
  • 批准号:
    0626305
  • 财政年份:
    2006
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Continuing Grant
Mayer-sampling Methods for Calculation of Statistical - Mechanical Cluster Integrals: Nanotechnology and Other Applications
用于计算统计机械簇积分的迈尔采样方法:纳米技术和其他应用
  • 批准号:
    0414439
  • 财政年份:
    2004
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Continuing Grant
ITR: Advanced Computational Environment for Molecular and Mesoscale Modeling
ITR:分子和介尺度建模的高级计算环境
  • 批准号:
    0219266
  • 财政年份:
    2002
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Continuing Grant
Development of High-Quality Models for Anhydrous and Aqueous Hydrogen Fluoride
无水和含水氟化氢的高质量模型的开发
  • 批准号:
    0076515
  • 财政年份:
    2000
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Continuing Grant

相似海外基金

Rigorous Privacy Compliance in Modern Application Ecosystems
现代应用生态系统中严格的隐私合规性
  • 批准号:
    DP240103068
  • 财政年份:
    2024
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Discovery Projects
Scaling MENTORS in CS (Matching Experienced and Novice Teachers for Ongoing Rigorous Support in Computer Science)
扩展计算机科学领域的导师(匹配经验丰富的教师和新手教师,为计算机科学领域提供持续的严格支持)
  • 批准号:
    2318232
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Standard Grant
Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
  • 批准号:
    10721722
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
  • 批准号:
    10679252
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
RFA-CE-23-006 - Rigorous examination of anonymous reporting system data to prevent youth suicide and firearm violence: an applied natural language approach
RFA-CE-23-006 - 严格检查匿名报告系统数据以防止青少年自杀和枪支暴力:应用自然语言方法
  • 批准号:
    10786629
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
Elucidation of auditory machanism based on rigorous solution of the cochlear fluid mechanics model and its application to auditory medicine
基于耳蜗流体力学模型严密求解的听觉机制阐明及其在听觉医学中的应用
  • 批准号:
    23H03772
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rigorous Evaluation of Strategies to Prevent Overdose through Linking People with Illicit Substance Use Disorders to Recovery Support Services - 2022
通过将非法药物使用障碍患者与康复支持服务联系起来来预防用药过量的策略的严格评估 - 2022
  • 批准号:
    10817314
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
  • 批准号:
    10635323
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
Developing user-centric training in rigorous research: post-selection inference, publication bias, and critical evaluation of statistical claims.
在严谨的研究中开展以用户为中心的培训:选择后推断、发表偏见和统计声明的批判性评估。
  • 批准号:
    10721491
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮​​点误差分析
  • 批准号:
    2319507
  • 财政年份:
    2023
  • 资助金额:
    $ 36.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了