SaTC: CORE: Small: Combating AI Synthesized Media Beyond Detection

SaTC:核心:小型:对抗无法检测的人工智能合成媒体

基本信息

  • 批准号:
    2153112
  • 负责人:
  • 金额:
    $ 49.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Recent years have seen a startling and troubling rise of online disinformation. One disconcerting form of disinformation is the manipulation of images/audios/videos to impersonate someone else. Realistic manipulations can be generated by advanced AI technologies in the form of deep neural networks, and commonly known as deepfakes. Deepfakes can be weaponized to cause negative consequences. Although detection methods have demonstrated promising performance on benchmark datasets, they are not adequate and have several limitations. This project aims to combat deepfakes more effectively and beyond detection with active and proactive approaches to root out deepfakes and protect individuals from deepfake attacks. The active and proactive approaches take effect before the deepfake is generated. The active approach does not interfere with the training or generation of deepfake, whereas the proactive approach aims to disrupt these processes to prevent the deepfake. This project work provides timely and needed technologies to mitigate the negative impacts of deepfakes in cyberspace and society at large.This project includes four main research activities. The first is to strengthen the defense of current deepfake detection methods against anti-forensic attacks. The approach taken here is to use random ensemble models that process input with a randomly chosen member from an infinite ensemble of classification models. The second activity aims to attribute a deepfake to its generation model, i.e., recover the specific means that a deepfake is created. This step is important tracing a deepfake's origin and author. In the third activity, the research effort is focused on the methods that actively add traces to synthesized deepfakes by contaminating the training data. The fourth activity of this project further studies methods that can obstruct deepfake generation by using data poisoning to sabotage the training process. The poisoned data will lead to reduced efficiency and low-quality deepfakes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,网上虚假信息的数量惊人且令人不安。虚假信息的一种令人不安的形式是操纵图像/音频/视频来冒充他人。逼真的操作可以由先进的人工智能技术以深度神经网络的形式生成,通常被称为deepfakes。Deepfakes可以被武器化,造成负面后果。虽然检测方法在基准数据集上表现出有前途的性能,但它们并不足够,并且具有一些限制。该项目旨在更有效地打击deepfake,并通过积极主动的方法来根除deepfake并保护个人免受deepfake攻击。主动和积极的方法在deepfake生成之前生效。主动方法不会干扰deepfake的训练或生成,而主动方法旨在破坏这些过程以防止deepfake。该项目工作提供及时和必要的技术,以减轻deepfakes在网络空间和整个社会的负面影响。该项目包括四个主要研究活动。一是加强当前deepfake检测方法对反取证攻击的防御。这里采用的方法是使用随机集成模型,该模型使用从分类模型的无限集成中随机选择的成员来处理输入。第二个活动旨在将deepfake归因于其生成模型,即,recover是创建deepfake的具体方式。这一步对于追踪Deepfake的起源和作者非常重要。在第三项活动中,研究工作的重点是通过污染训练数据来主动向合成的deepfake添加痕迹的方法。 该项目的第四项活动进一步研究了通过使用数据中毒来破坏训练过程来阻止deepfake生成的方法。中毒的数据将导致效率降低和低质量的deepfakes。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siwei Lyu其他文献

Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph
基于结构感知超图的在线变形目标跟踪
  • DOI:
    10.1109/tip.2016.2570556
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Dawei Du;Honggang Qi;Wenbo Li;Longyin Wen;Qingming Huang;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Deep Constrained Low-Rank Subspace Learning for Multi-View Semi-Supervised Classification
用于多视图半监督分类的深度约束低秩子空间学习
  • DOI:
    10.1109/lsp.2019.2923857
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe Xue;Junping Du;Dawei Du;Guorong Li;Qingming Huang;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Countering JPEG anti-forensics based on noise level estimation
基于噪声水平估计的 JPEG 反取证对抗
  • DOI:
    10.1007/s11432-016-0426-1
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Zeng;Xiangui Kang;Jingjing Yu;Siwei Lyu
  • 通讯作者:
    Siwei Lyu
Vertebral artery course variation leading to an insufficient proximal anchoring area for thoracic endovascular aortic repair.
椎动脉走行变化导致胸主动脉腔内修复的近端锚固区域不足。
  • DOI:
    10.1177/17085381221140319
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Zuanbiao Yu;Siwei Lyu;Dehai Lang;Di Wang;Songjie Hu;Xiaoliang Yin;Yunpeng Ding;Chunbo Xu;Chen Lin;Jiangnan Hu
  • 通讯作者:
    Jiangnan Hu
Unifying Non-Maximum Likelihood Learning Objectives with Minimum KL Contraction
将非最大似然学习目标与最小 KL 收缩统一起来

Siwei Lyu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siwei Lyu', 18)}}的其他基金

NSF Convergence Accelerator Track F: Online Deception Awareness and Resilience Training (DART)
NSF 融合加速器轨道 F:在线欺骗意识和弹性培训 (DART)
  • 批准号:
    2230494
  • 财政年份:
    2022
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track F: A Disinformation Range to Improve User Awareness and Resilience to Online Disinformation
NSF 融合加速器轨道 F:提高用户对在线虚假信息的认识和抵御能力的虚假信息范围
  • 批准号:
    2137871
  • 财政年份:
    2021
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
  • 批准号:
    2008532
  • 财政年份:
    2020
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
  • 批准号:
    2103450
  • 财政年份:
    2020
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: A Dynamic Bayesian Approach to Real Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks (Continuation)
NRI:协作研究:抓取采集和其他接触任务中实时估计和过滤的动态贝叶斯方法(续)
  • 批准号:
    1537257
  • 财政年份:
    2015
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
Blind Noise Estimation Using Signal Statistics in Random Band-Pass Domains
使用随机带通域中的信号统计进行盲噪声估计
  • 批准号:
    1319800
  • 财政年份:
    2013
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
NRI-Small: Collaborative Research: A Dynamic Bayesian Approach to Real-Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks
NRI-Small:协作研究:在抓取采集和其他接触任务中进行实时估计和过滤的动态贝叶斯方法
  • 批准号:
    1208463
  • 财政年份:
    2012
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
CAREER: A New Statistical Framework for Natural Images with Applications in Vision
职业:一种新的自然图像统计框架及其在视觉中的应用
  • 批准号:
    0953373
  • 财政年份:
    2010
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
  • 批准号:
    2310470
  • 财政年份:
    2023
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
  • 批准号:
    2321649
  • 财政年份:
    2023
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 49.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了