Blind Noise Estimation Using Signal Statistics in Random Band-Pass Domains
使用随机带通域中的信号统计进行盲噪声估计
基本信息
- 批准号:1319800
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Noise, which corresponds to random variations extrinsic to the signals of interest, is an ubiquitous aspect that affects the performance of many tasks in signal processing. Even with the improving quality and sophistication of the modern acquisition devices, digital signals still carry noise due to many incontrollable factors. This research focuses on the fundamental problem of estimating parameters of the random noise model directly from a noise corrupted signal. As an immediate consequence, the results of this investigation will be applicable in a wide range of fields, including the forensic analysis of digital images, automatic processing of medical images, spectrum sensing in wireless communications and data processing in sensory neuroscience. The technical approach taken in this research exploits the regular statistical properties of the original signals in multiple signal representations and their relationship with the noise parameters. Specifically, we will investigate the use of domains constructed from random band-pass filters that are more effective in revealing ?typical? statistical properties of the signals, especially when compared with deterministic representations such as Fourier, DCT, and wavelet. Concurrently, we will investigate the mathematical relationship between the observed statistics of noisy signal and the noise parameters. Drawing on these theoretical findings, this research is expected to lead to more effective and efficient algorithms for blind noise estimation. More generally, the proposed work will also explore efficient algorithms for blind local noise estimation in the presence of non-stationary noise statistics.
噪声是信号处理中一个普遍存在的问题,它影响着信号处理中许多任务的性能。即使现代采集设备的质量和复杂性不断提高,由于许多不可控因素,数字信号仍然携带噪声。本研究的重点是直接从噪声污染的信号中估计随机噪声模型的参数的基本问题。作为一个直接的结果,这项调查的结果将适用于广泛的领域,包括数字图像的法医分析,医学图像的自动处理,无线通信中的频谱传感和感觉神经科学中的数据处理。本研究采用的技术方法利用了原始信号在多种信号表示中的常规统计特性及其与噪声参数的关系。具体而言,我们将调查使用的域构造的随机带通滤波器,更有效地揭示?典型的?信号的统计特性,特别是与确定性表示(如傅立叶、DCT和小波)相比时。同时,我们将研究噪声信号的观测统计量与噪声参数之间的数学关系。利用这些理论研究成果,本研究有望导致更有效和更高效的算法盲噪声估计。更一般地说,所提出的工作还将探索有效的算法,在非平稳噪声统计的存在下,盲局部噪声估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siwei Lyu其他文献
Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph
基于结构感知超图的在线变形目标跟踪
- DOI:
10.1109/tip.2016.2570556 - 发表时间:
2016-08 - 期刊:
- 影响因子:10.6
- 作者:
Dawei Du;Honggang Qi;Wenbo Li;Longyin Wen;Qingming Huang;Siwei Lyu - 通讯作者:
Siwei Lyu
Deep Constrained Low-Rank Subspace Learning for Multi-View Semi-Supervised Classification
用于多视图半监督分类的深度约束低秩子空间学习
- DOI:
10.1109/lsp.2019.2923857 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Zhe Xue;Junping Du;Dawei Du;Guorong Li;Qingming Huang;Siwei Lyu - 通讯作者:
Siwei Lyu
Countering JPEG anti-forensics based on noise level estimation
基于噪声水平估计的 JPEG 反取证对抗
- DOI:
10.1007/s11432-016-0426-1 - 发表时间:
2017-08 - 期刊:
- 影响因子:0
- 作者:
Hui Zeng;Xiangui Kang;Jingjing Yu;Siwei Lyu - 通讯作者:
Siwei Lyu
Vertebral artery course variation leading to an insufficient proximal anchoring area for thoracic endovascular aortic repair.
椎动脉走行变化导致胸主动脉腔内修复的近端锚固区域不足。
- DOI:
10.1177/17085381221140319 - 发表时间:
2022 - 期刊:
- 影响因子:1.1
- 作者:
Zuanbiao Yu;Siwei Lyu;Dehai Lang;Di Wang;Songjie Hu;Xiaoliang Yin;Yunpeng Ding;Chunbo Xu;Chen Lin;Jiangnan Hu - 通讯作者:
Jiangnan Hu
Unifying Non-Maximum Likelihood Learning Objectives with Minimum KL Contraction
将非最大似然学习目标与最小 KL 收缩统一起来
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Siwei Lyu - 通讯作者:
Siwei Lyu
Siwei Lyu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siwei Lyu', 18)}}的其他基金
SaTC: CORE: Small: Combating AI Synthesized Media Beyond Detection
SaTC:核心:小型:对抗无法检测的人工智能合成媒体
- 批准号:
2153112 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track F: Online Deception Awareness and Resilience Training (DART)
NSF 融合加速器轨道 F:在线欺骗意识和弹性培训 (DART)
- 批准号:
2230494 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track F: A Disinformation Range to Improve User Awareness and Resilience to Online Disinformation
NSF 融合加速器轨道 F:提高用户对在线虚假信息的认识和抵御能力的虚假信息范围
- 批准号:
2137871 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
- 批准号:
2008532 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
RI: Small: A Study of New Aggregate Losses for Machine Learning
RI:小:机器学习新总损失的研究
- 批准号:
2103450 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
NRI: Collaborative Research: A Dynamic Bayesian Approach to Real Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks (Continuation)
NRI:协作研究:抓取采集和其他接触任务中实时估计和过滤的动态贝叶斯方法(续)
- 批准号:
1537257 - 财政年份:2015
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
NRI-Small: Collaborative Research: A Dynamic Bayesian Approach to Real-Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks
NRI-Small:协作研究:在抓取采集和其他接触任务中进行实时估计和过滤的动态贝叶斯方法
- 批准号:
1208463 - 财政年份:2012
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
CAREER: A New Statistical Framework for Natural Images with Applications in Vision
职业:一种新的自然图像统计框架及其在视觉中的应用
- 批准号:
0953373 - 财政年份:2010
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
相似国自然基金
新一代超声速客机起降阶段增升装置气动噪声产生机理及控制方法研究(NOISE)
- 批准号:12261131502
- 批准年份:2022
- 资助金额:105.00 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Estimation of seismic noise: toward efficient seismic observation and microtremor survey
地震噪声估计:实现高效的地震观测和微震勘测
- 批准号:
23K03514 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realization of Minimum Volume Design of Noise Filter for Power Converters Based on Parasitic Impedance Estimation Techniques
基于寄生阻抗估计技术的功率变换器噪声滤波器最小体积设计的实现
- 批准号:
21K14145 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simultaneous Estimation of Noise Level and Solution Smoothness for Ill-Posed Problems
同时估计不适定问题的噪声水平和解决方案平滑度
- 批准号:
416552794 - 财政年份:2019
- 资助金额:
$ 39.97万 - 项目类别:
Research Grants
Modeling of dynamic network based on noise information estimation: Identification of errors-in-variables models in closed-loop
基于噪声信息估计的动态网络建模:闭环变量模型误差识别
- 批准号:
16K18127 - 财政年份:2016
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Study on Suppression of Self-Noise Propagation in Iterative Detection of Unified Channel Estimation, Synchronization, and Decoding
统一信道估计、同步和译码迭代检测中自噪声传播抑制的研究
- 批准号:
25420369 - 财政年份:2013
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MAP estimation-based noise suppression and blind source separation using single voice activity detection
使用单一语音活动检测的基于 MAP 估计的噪声抑制和盲源分离
- 批准号:
24500204 - 财政年份:2012
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimation of the number of population exposed by high level road traffic noise for a study of health risk caused by noise
估计受到高水平道路交通噪声影响的人口数量,以研究噪声引起的健康风险
- 批准号:
24560715 - 财政年份:2012
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimation of noise in the multispectral camera and recovery of spectral reflectance
多光谱相机中的噪声估计和光谱反射率的恢复
- 批准号:
23500235 - 财政年份:2011
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel estimation method for spatially varying noise levels in MR images
开发一种新的 MR 图像空间变化噪声水平估计方法
- 批准号:
23791422 - 财政年份:2011
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
ROBUST ESTIMATION OF REGIONAL PULMONARY PARAMETERS IN PRESENCE OF NOISE
存在噪声时区域肺参数的稳健估计
- 批准号:
7955345 - 财政年份:2009
- 资助金额:
$ 39.97万 - 项目类别: