CRII: SaTC: Backdoor Detection, Mitigation, and Prevention in Deep Neural Networks
CRII:SaTC:深度神经网络中的后门检测、缓解和预防
基本信息
- 批准号:2153358
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).From Alexa to self-driving vehicles, deep learning approaches to machine learning are rapidly transforming how we work and live, becoming prevalent and pervasive in contexts from centralized servers to fully distributed Internet-of-Things (IoT) configurations. This ubiquity makes deep learning-based systems an increasingly attractive target for a variety of cyberattacks, such as the generation of adversarial examples that trick a deep learning classifier into making incorrect decisions. Less studied are attacks in which attackers are able to corrupt the training of an existing model, or distribute a model they created (for instance, as part of a software library) that contains “backdoors”, ways that an attacker can create system inputs that grant unwarranted access or lead to predictable errors or failures. This project’s goal is to lay out the fundamental principles, theories, and constraints on the creation of neural network backdoors, along with techniques and testbeds for detecting and mitigating them. The testbed will enable a wide variety of research questions around neural networks beyond this specific project, and the work will also provide training and education opportunities around security for K-12 teachers, students, and parents. A key thrust of the project is to systematically investigate existing neural backdoor attacks to understand fundamental and generalizable attack principles. Based on those findings, the research team will (1) devise algorithms to accurately detect neural backdoors embedded in deep learning models, (2) develop robust backdoor eradication schemes for guaranteed model recovery, and (3) investigate preventive defense measure to make it harder to form backdoors during the training process. In parallel to the above research tasks, the investigator will develop a Development and Experimental Environment for Neural Backdoor testbed that collects neural backdoor libraries and datasets, with the goal of supporting standardized, replicable research around neural backdoors and eventually neural networks more generally. Overall, the proposed work will lead to enabling technologies to secure deep learning systems, accelerating their development and widening their trustworthy adoption in various application domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从Alexa到自动驾驶汽车,机器学习的深度学习方法正在迅速改变我们的工作和生活方式,在从集中式服务器到完全分布式物联网(IoT)配置的环境中变得普遍和普遍。这种普遍性使得基于深度学习的系统成为各种网络攻击越来越有吸引力的目标,例如生成对抗性示例,欺骗深度学习分类器做出错误的决策。较少研究的是攻击者能够破坏现有模型的训练,或分发他们创建的包含“后门”的模型(例如,作为软件库的一部分),攻击者可以创建系统输入,授予未经授权的访问或导致可预测的错误或失败。该项目的目标是制定创建神经网络后门的基本原则,理论和约束,沿着检测和缓解它们的技术和测试平台。该测试平台将使围绕神经网络的各种研究问题超出这个特定项目,这项工作还将为K-12教师,学生和家长提供围绕安全的培训和教育机会。该项目的一个关键目标是系统地研究现有的神经后门攻击,以了解基本的和可推广的攻击原理。基于这些发现,研究团队将(1)设计算法来准确检测嵌入深度学习模型中的神经后门,(2)开发强大的后门根除方案以保证模型恢复,以及(3)研究预防性防御措施,使其更难在训练过程中形成后门。在完成上述研究任务的同时,研究人员还将开发一个神经后门测试平台的开发和实验环境,收集神经后门库和数据集,目标是支持围绕神经后门和最终神经网络的标准化、可复制研究。总的来说,拟议的工作将使技术能够保护深度学习系统,加速其开发并扩大其在各个应用领域的可靠采用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUI NING其他文献
RUI NING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
- 批准号:
2348130 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
- 批准号:
2348304 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
- 批准号:
2348177 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant