CRII: III: Learning networks from strategic decisions: enabling network intervention and revealing social privacy risks without structural information

CRII:III:从战略决策中学习网络:在没有结构信息的情况下实现网络干预并揭示社会隐私风险

基本信息

  • 批准号:
    2153468
  • 负责人:
  • 金额:
    $ 15.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).The rise of digital platforms and cloud-based products changed business operations and consumer decision-making. The bolstered connections improve the effectiveness of dynamic pricing, marketing campaigns, and large-scale behavioral change on digital platforms. On crowdsourced review platforms such as Yelp and Google Review, publicly ratings and reviews reduce consumer information search friction; on E-commerce retailers such as Amazon and Alibaba, information about products strengthens consumers' trust in the products. Integrating machine learning methods and rich behavioral data improve consumers' experience, accrues revenues, and guides manufacturers' and retailers' pricing strategies. Even though connections among individuals are powerful in a wide range of applications: it is not always available for various reasons: (1) network data is costly to collect; (2) network data may be too sensitive and confidential to share; (3) network data is dynamic and static data's accuracy may decay over time. In the meantime, strengthened social interaction and data integration pose privacy risks, leading to data security issues at a systematic level.This project lays the groundwork for learning social network structures based on large-scale behavioral data. Two inversely-related issues motivate this research: 1) How to design network interventions to leverage social externality when structural data is unavailable? 2) Does publicly available behavioral data pose social privacy risk in leaking social network information? This project studies the general and fundamental problem of learning the network structures and approximating utility functions based on observed decisions. This project first analyzes this network learning problem's fundamental and conditional identifiability by imposing a linear-quadratic network game structure in a network of strategic decision-makers. It will extend this linear-quadratic game to a broader class of network games. This project further develops a generative deep learning framework to approximate human decision-making processes on social networks. Finally, the researchers will demonstrate the practical value of this research by applying the theory and approach to network intervention (e.g., information diffusion and influence maximization) and privacy risk evaluations (e.g., shadow profiling and social attack) using three large-scale digital behavioral data and two small-scale experimental data. This interdisciplinary project builds upon and contributes to game theory, machine learning, network science, and management science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公法117-2)。数字平台和基于云的产品的兴起改变了商业运营和消费者的决策。加强的联系提高了动态定价、营销活动和数字平台上的大规模行为变化的有效性。在Yelp和谷歌点评等众包评论平台上,公开的评分和评论减少了消费者信息搜索的摩擦;在亚马逊和阿里巴巴等电商零售商上,关于产品的信息加强了消费者对产品的信任。将机器学习方法和丰富的行为数据相结合,改善了消费者的体验,增加了收入,并指导制造商和零售商的定价策略。尽管个人之间的连接在广泛的应用中是强大的:但由于各种原因,它并不总是可用:(1)收集网络数据的成本很高;(2)网络数据可能过于敏感和机密,无法共享;(3)网络数据是动态的,静态数据的准确性可能会随着时间的推移而下降。同时,社交互动和数据整合的加强带来隐私风险,导致系统层面的数据安全问题,为基于大规模行为数据学习社交网络结构奠定了基础。这项研究的动机是两个反向相关的问题:1)当结构性数据不可用时,如何设计网络干预来利用社会外部性?2)公开可用的行为数据是否会在社交网络信息泄露中构成社会隐私风险?这个项目研究了基于观测决策学习网络结构和逼近效用函数的一般和基本问题。该项目首先通过将线性-二次网络博弈结构强加于战略决策者网络来分析该网络学习问题的基本可识别性和条件可识别性。它将把这种线性二次型游戏扩展到更广泛的网络游戏类别。该项目进一步开发了一个生成性深度学习框架,以近似人类在社交网络上的决策过程。最后,研究人员将使用三个大规模的数字行为数据和两个小规模的实验数据,将该理论和方法应用于网络干预(例如,信息扩散和影响力最大化)和隐私风险评估(例如,影子侧写和社交攻击),从而证明本研究的实用价值。这个跨学科的项目建立在博弈论、机器学习、网络科学和管理科学的基础上,并对其做出了贡献。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to Infer Structures of Network Games
  • DOI:
    10.48550/arxiv.2206.08119
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emanuele Rossi;Federico Monti;Yan Leng;Michael M. Bronstein;Xiaowen Dong
  • 通讯作者:
    Emanuele Rossi;Federico Monti;Yan Leng;Michael M. Bronstein;Xiaowen Dong
Long-Range Social Influence in Phone Communication Networks on Offline Adoption Decisions
电话通信网络对线下采用决策的远程社会影响
  • DOI:
    10.1287/isre.2023.1231
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Leng, Yan;Dong, Xiaowen;Moro, Esteban;Pentland, Alex
  • 通讯作者:
    Pentland, Alex
Interpretable Stochastic Block Influence Model: Measuring Social Influence Among Homophilous Communities
可解释的随机区块影响力模型:衡量同质社区的社会影响力
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Leng其他文献

A polyhedral oligomeric silsesquioxane (POSS)-bridged oxo-molybdenum Schiff base complex with enhanced heterogeneous catalytic activity in epoxidation
一种多面体低聚倍半硅氧烷(POSS)桥接的氧代钼席夫碱络合物,在环氧化中具有增强的多相催化活性
Calibration of Heterogeneous Treatment Effects in Randomized Experiments
随机实验中异质处理效果的校准
Current and future trends in the biocontrol of postharvest diseases
  • DOI:
    https://doi.org/10.1080/10408398.2022.2156977
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaojiao Li;Shixian Zeng;Michael Wisniewski;Samir Droby;Longfeng Yu;Fuquan An;Yan Leng;Chaowen Wang;Xiaojun Li;Min He;Qinhong Liao;Jia Liu;Yong Wang;Yuan Sui
  • 通讯作者:
    Yuan Sui
Understanding of the synergetic effect of FeCoN<sub>8</sub>C dual active centers catalyst for oxygen reduction reaction and oxygen evolution reaction: A density functional theory study
  • DOI:
    10.1016/j.apsusc.2024.162055
  • 发表时间:
    2025-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Chen-Shuang Yin;Hui-Jian Zou;Yan Leng;Xikun Yang;Chun-Gang Min;Feng Tan;Ai-Min Ren
  • 通讯作者:
    Ai-Min Ren
Characterisation of cytochrome c oxidase-coding genes from mung bean and their response to cadmium stress based on genome-wide identification and transcriptome analysis
  • DOI:
    10.1007/s11033-024-10102-w
  • 发表时间:
    2024-11-26
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Yan Leng;Zhuan-Bin Niu;Shao-Hua Liu;Fu-Jun Qiao;Gui-Fang Liu;Bin Cheng;Shi-Weng Li
  • 通讯作者:
    Shi-Weng Li

Yan Leng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
  • 批准号:
    2025JJ50094
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
  • 批准号:
    JCZRYB202500652
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
  • 批准号:
    JCZRQN202501004
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
  • 批准号:
    2025JJ50319
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
  • 批准号:
    2025JJ50694
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ASPGR与MRC2双受体介导铱(III)配合物 脂质体抗肝肿瘤研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Ap-Exo III 联合模式识别构建降尿酸药 物筛选新方法的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
稻田土壤二氧化锰还原生成Mn(III)过程对As(III)的氧化-固定机制
  • 批准号:
    2025JJ60246
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
  • 批准号:
    2246067
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Self-Supervised Graph Neural Network Meta-Learning for Cancer Multi-Omics and Driver Discovery
CRII:III:用于癌症多组学和驱动发现的自监督图神经网络元学习
  • 批准号:
    2245805
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Pursuing Interpretability in Utilitarian Online Learning Models
CRII:III:追求功利在线学习模式的可解释性
  • 批准号:
    2245946
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Harnessing Deep-Learning to Simplify Biological Inference from Complex Imaging Data
CRII:III:利用深度学习简化复杂成像数据的生物推断
  • 批准号:
    2246064
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Knowledge Graph Completion with Transferable Representation Learning
CRII:III:通过可迁移表示学习完成知识图谱
  • 批准号:
    2105329
  • 财政年份:
    2021
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Informative Bayesian Learning and Data Gathering Through Expert-Acquired Data
CRII:III:通过专家获取的数据进行信息贝叶斯学习和数据收集
  • 批准号:
    2202395
  • 财政年份:
    2021
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Graph Neural Networks: A Feature and Structure Learning Approach
CRII:III:图神经网络:一种特征和结构学习方法
  • 批准号:
    2104797
  • 财政年份:
    2021
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Deep Learning Methods for Protein Inter-residue Distance Prediction
CRII:III:蛋白质残基间距离预测的深度学习方法
  • 批准号:
    1948117
  • 财政年份:
    2020
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Fair Machine Learning with Restricted Access to Sensitive Personal Data
CRII:III:公平机器学习,限制访问敏感个人数据
  • 批准号:
    2101936
  • 财政年份:
    2020
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
CRII: III: Multiresolution Tensor Learning for Scalable and Interpretable Spatiotemporal Analysis
CRII:III:用于可扩展和可解释时空分析的多分辨率张量学习
  • 批准号:
    2037745
  • 财政年份:
    2020
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了