Orbit Equivalences in Borel Dynamics
Borel Dynamics 中的轨道等效
基本信息
- 批准号:2153981
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ergodic theory is the branch of mathematics that studies average behavior of dynamical systems, examples of which are movements of celestial bodies or gas particles. Exhaustive classification of all such systems is impossible, and it is fruitful to study notions of equivalence when dynamical systems share orbits but traverse them in a different order or share paths but follow them with different speeds. Such relations are called orbit equivalence relations. Due to their statistical nature, ergodic theoretical conclusions always leave the possibility of an exceptional behavior on some outlying orbits. Borel dynamics is a mathematical discipline that strives to adapt and enhance ergodic theoretical methods to study all orbits of a dynamical system, ruling out any exceptions. The PI will investigate variants of orbit equivalence within the scope of Borel dynamics. The project provides research training opportunities for graduate students.This project concentrates on the study of orbit equivalence relations of Borel flows. Complete classification of measure-preserving transformations is known to be an infeasible task, and ergodic theory has been advanced with the introduction of notions of equivalence that are weaker than the isomorphism. Notable examples include orbit equivalence, (even) Kakutani equivalence, and alpha equivalence, all of which can be viewed under the unified umbrella of restricted orbit equivalence formalism. The PI intends to investigate corresponding notions of orbit equivalence within the scope of Borel dynamics. Problems investigated in this project are likely to have connections with Borel combinatorics, ergodic theory, symbolic dynamics, and descriptive set theory of Polish group actions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
遍历理论是数学的分支,研究动力系统的平均行为,例如天体或气体粒子的运动。对所有这样的系统进行详尽的分类是不可能的,当动力系统共享轨道但以不同的顺序遍历它们或共享路径但以不同的速度跟随它们时,研究等价的概念是富有成效的。这种关系称为轨道等价关系。由于其统计性质,遍历理论的结论总是留下一个例外的行为在一些边远的轨道的可能性。波莱尔动力学是一门数学学科,致力于适应和增强遍历理论方法来研究动力系统的所有轨道,排除任何例外。PI将研究Borel动力学范围内的轨道等效变量。本计画为研究生提供研究训练机会,主要研究波莱尔流的轨道等价关系。完全分类的测度保持变换是已知的是一个不可行的任务,遍历理论已先进的引进概念的等价性弱于同构。值得注意的例子包括轨道等价,(甚至)角谷等价和阿尔法等价,所有这些都可以在限制轨道等价形式主义的统一保护伞下查看。PI打算在博雷尔动力学范围内研究相应的轨道等效概念。在这个项目中调查的问题很可能与波莱尔组合学,遍历理论,符号动力学,和波兰群体行动的描述集理论有联系。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kostyantyn Slutskyy其他文献
Compact Structures in Descriptive Classification Theory BY JOSEPH ROBERT ZIELINSKI
描述性分类理论中的紧凑结构作者:JOSEPH ROBERT ZIELINSKI
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Isaac Goldbring;Dima Sinapova;J. Baldwin;B. M. Braga;G. Conant;Ellie Dannenberg;Jessica Dyer;A. Furman;D. Groves;M. Hull;Maxwell Levine;Kostyantyn Slutskyy;C. Terry;Phillip R. Wesolek - 通讯作者:
Phillip R. Wesolek
Kostyantyn Slutskyy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Derived equivalences and autoequivalences in algebraic geometry
代数几何中的导出等价和自等价
- 批准号:
EP/X01066X/1 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship
Study of special blocks of spin symmetric groups for irreducible representations and derived equivalences
研究不可约表示和导出等价的自旋对称群的特殊块
- 批准号:
20K03506 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homotopical Coalgebras, Algebraic Models, and Realizing Derived Equivalences
同伦余代数、代数模型和实现导出等价
- 批准号:
1811278 - 财政年份:2018
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Higher Representations and Derived Equivalences
更高的表示和派生等价
- 批准号:
1702305 - 财政年份:2017
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Studies of tilting mutation theory and derived equivalences
倾斜突变理论及其衍生等价的研究
- 批准号:
15K17516 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Derived equivalences and Gorenstein dimension
导出等价和 Gorenstein 维数
- 批准号:
26887034 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Behavioural Equivalences: Environmental Aspects, Metrics and Generic Algorithms (BEMEGA)
行为等效:环境方面、指标和通用算法 (BEMEGA)
- 批准号:
260261790 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Research Grants
Cohomological and singularity invariants via Hodge modules and derived equivalences
通过 Hodge 模和导出等价的上同调和奇点不变量
- 批准号:
1405516 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Coinduction Meets Algebra for the Axiomatization and Algorithmics of System Equivalences
共导与代数相结合,实现系统等价的公理化和算法
- 批准号:
259234802 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Research Grants
On Morita and derived equivalences for blocks of finite groups
论 Morita 和有限群块的导出等价
- 批准号:
26400026 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)