Cohomological and singularity invariants via Hodge modules and derived equivalences
通过 Hodge 模和导出等价的上同调和奇点不变量
基本信息
- 批准号:1405516
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This mathematical research project concerns algebraic geometry and related topics. Some of the problems under study in the project involve the extension of tools of algebraic geometry using algebraic structures called Hodge modules. Others involve checking invariance of various topological quantities under derived equivalences. All parts of the project will have a broad range of applications, further knowledge in the field, initiate interaction among people of different mathematical backgrounds, and produce problems suitable for research involvement of Ph.D. students. This project studies cohomological, numerical, and singularity invariants of projective manifolds by looking at their derived categories of coherent sheaves, and by applying techniques from generic vanishing and mixed Hodge module theory. The PI would like to develop a vanishing, injectivity and extension package to be added to Saito's Kodaira-type vanishing theorem for Hodge modules, and to use this in order to attack problems on the variation of families of varieties of varieties of general type or Kodaira dimension zero. He is also interested in studying generalizations of multiplier ideals coming from the Hodge filtration on localized D-modules, and to use this for attacking a conjecture on singularities of theta divisors. Another aim is to study singularities in the minimal model program by establishing a connection between Saito's theory and the filtered de Rham complex of singular varieties. In the direction of derived categories, the main topic under study is comparison of the cohomological invariants and the geometry of varieties with equivalent bounded derived categories of coherent sheaves, a topic of interest both in mirror symmetry and in birational geometry. Continuing work on the behavior of the Picard variety and of certain Hodge numbers under derived equivalence, the PI plans to address problems like the invariance of the canonical cohomology and the invariance of cohomological support loci coming from generic vanishing theory. He is also interested in studying similar questions in the singular setting, extending some previous work in the case of varieties with quotient singularities.
这个数学研究项目涉及代数几何和相关主题。 一些问题正在研究中的项目涉及扩展工具的代数几何使用代数结构称为霍奇模块。其他涉及检查不变性的各种拓扑量下导出的等价。该项目的所有部分将有广泛的应用,进一步了解该领域,启动不同数学背景的人之间的互动,并产生适合博士研究参与的问题。学生这个项目研究上同调,数值和奇异不变量的射影流形,通过寻找他们的派生类别的相干层,并通过应用技术从一般消失和混合霍奇模理论。PI希望开发一个消失,内射性和扩展包,以添加到齐藤的Kodaira型消失定理霍奇模块,并使用此,以攻击问题的变化的家庭品种的品种一般类型或科代拉零维。他还感兴趣的研究推广乘数理想来自霍奇过滤本地化的D-模块,并利用这一攻击猜想的奇异性θ因子。另一个目的是研究奇异性的最小模型程序之间建立联系齐藤的理论和过滤德拉姆复杂的奇异品种。在派生范畴的方向,正在研究的主要课题是比较的上同调不变量和几何的品种与等价的有界派生类别的相干层,一个感兴趣的话题都在镜像对称和双有理几何。继续研究Picard簇和某些Hodge数在导出等价下的行为,PI计划解决诸如典型上同调的不变性和来自一般消失理论的上同调支撑轨迹的不变性等问题。他也有兴趣在研究类似的问题在奇异的设置,延长一些以前的工作的情况下,品种与商奇点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihnea Popa其他文献
On the base locus of the generalized theta divisor
- DOI:
10.1016/s0764-4442(00)80051-8 - 发表时间:
1999-09-15 - 期刊:
- 影响因子:
- 作者:
Mihnea Popa - 通讯作者:
Mihnea Popa
Mihnea Popa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihnea Popa', 18)}}的其他基金
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
- 批准号:
2040378 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
- 批准号:
2000610 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Hodge Theory and Birational Geometry
霍奇理论和双有理几何
- 批准号:
1700819 - 财政年份:2017
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Derived Equivalences, Generic Vanishing, and the Structure of Cohomology
导出等价、泛型消失和上同调的结构
- 批准号:
1101323 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
General Vanishing and Regularity in Derived Categories, Adjoint Ideals and Extension Theorems
派生范畴、伴随理想和可拓定理中的一般消失性和正则性
- 批准号:
0758253 - 财政年份:2008
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
- 批准号:
0500985 - 财政年份:2005
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
- 批准号:
0601252 - 财政年份:2005
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
ABELIAN VARIETIES, MODULI OF VECTOR BUNDLES AND MODULI OF COURVES
阿贝尔簇、向量丛模和曲线模
- 批准号:
0200150 - 财政年份:2002
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
相似海外基金
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
- 批准号:
2239325 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
- 批准号:
2306726 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
- 批准号:
23H05437 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
New development of Newton's method in singularity theory
奇点理论中牛顿法的新发展
- 批准号:
23K03106 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
- 批准号:
2304692 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Construction of an automatic search tool with verification for mathematical models with singularity
具有奇异性的数学模型验证自动搜索工具的构建
- 批准号:
23K19016 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




