Far apart: outliers, extremal eigenvalues, and spectral gaps in random graphs and random matrices
相距较远:随机图和随机矩阵中的异常值、极值特征值和谱间隙
基本信息
- 批准号:2154099
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Technological and scientific advances in the last few decades have completely changed the way in which society operates. Massive amounts of data is produced and collected. This creates the need for data to be classified and categorized in order to extract meaningful and useful information. To model enormous networks, whether social, biological, or electrical, mathematicians and computer scientists have introduced the concepts of graphs and hypergraphs, with their tensors, adjacency matrices, and spectra, and have connected properties of the latter to properties of the former in order to better understand the structure of the current technological world. The goal of this project is to advance basic understanding of outliers in the spectra of random networks; such outliers have been connected to applications from Machine Learning to Bioinformatics and Coding Theory, as their presence or absence can be used to deduce various network properties. The results of this project can be used to develop algorithms, theoretical algorithmic guarantees, and benchmarks for a variety of applications in science and technology. Through its educational component (which includes research training opportunities for graduate and undergraduate students), this project will contribute to creating and ensuring the success of the next generation of mathematicians and data scientists. The PI will study general network models with certain symmetry properties (e.g., homogeneous and inhomogeneous bipartite random graphs, uniform and non-uniform hypergraphs, and the Hypergraph Stochastic Block Model). One part of the project involves creating and analyzing a randomized generalized eigenvalue algorithm, based on finding tight bounds on the smallest singular value for a random matrix model. Methods to be employed include concentration techniques and the non-backtracking operator, in addition to other techniques from combinatorics, probability, linear algebra, and statistics, to find sharp thresholds for regimes in which outliers may or may not exist in the variety of graph and hypergraph models. The PI will also study thresholds for community recovery and detection problems in the Hypergraph Stochastic Block Model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去几十年的技术和科学进步彻底改变了社会运作的方式。 产生和收集了大量的数据。这就需要对数据进行分类和归类,以便提取有意义和有用的信息。为了对巨大的网络进行建模,无论是社会的、生物的还是电子的,数学家和计算机科学家引入了图和超图的概念,以及它们的张量、邻接矩阵和谱,并将后者的性质与前者的性质联系起来,以便更好地理解当前技术世界的结构。该项目的目标是促进对随机网络频谱中异常值的基本理解;这些异常值已与从机器学习到生物信息学和编码理论的应用程序相关联,因为它们的存在或不存在可以用来推断各种网络属性。该项目的结果可用于开发科学技术中各种应用的算法、理论算法保证和基准测试。通过其教育部分(包括研究生和本科生的研究培训机会),该项目将有助于创造和确保下一代数学家和数据科学家的成功。 PI将研究具有某些对称性的一般网络模型(例如,均匀和非均匀二部随机图,均匀和非均匀超图,以及超图随机块模型)。该项目的一部分涉及创建和分析一个随机广义特征值算法,基于寻找随机矩阵模型的最小奇异值的严格界限。除了组合学、概率、线性代数和统计学的其他技术之外,采用的方法包括集中技术和非回溯算子,以找到异常值可能存在于或不存在于各种图形和超图模型中的制度的尖锐阈值。PI还将研究Hypergraph Stochastic Block Model中社区恢复和检测问题的阈值。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioana Dumitriu其他文献
Smallest eigenvalue distributions for $\beta$-Jacobi ensembles
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Ioana Dumitriu - 通讯作者:
Ioana Dumitriu
On expansion of $G_{n, d}$ with respect to $G_{m, d}$
关于 $G_{n, d}$ 相对于 $G_{m, d}$ 的展开
- DOI:
10.2140/apde.2023.16.571 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ioana Dumitriu;Mary Radcliffe - 通讯作者:
Mary Radcliffe
Eigenvalue statistics for beta-ensembles
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Ioana Dumitriu - 通讯作者:
Ioana Dumitriu
DISTRIBUTIONS OF THE EXTREME EIGENVALUES OF THE COMPLEX JACOBI RANDOM MATRIX ENSEMBLE
复雅可比随机矩阵系综的极值分布
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
P. Koev;Ioana Dumitriu - 通讯作者:
Ioana Dumitriu
Relative Density and Exact Recovery in Heterogeneous Stochastic Block Models
异质随机块模型中的相对密度和精确恢复
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Amin Jalali;Q. Han;Ioana Dumitriu;Maryam Fazel - 通讯作者:
Maryam Fazel
Ioana Dumitriu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioana Dumitriu', 18)}}的其他基金
Spectra of Large Random Graphs And Applications In Community Detection
大型随机图谱及其在社区检测中的应用
- 批准号:
1949617 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Spectra of Large Random Graphs And Applications In Community Detection
大型随机图谱及其在社区检测中的应用
- 批准号:
1712630 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Workshop on Numerical Linear Algebra and Optimization
数值线性代数与最优化研讨会
- 批准号:
1314406 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CAREER: Synergistic interactions between Numerical Linear Algebra and Stochastic Eigenanalysis (Random Matrix Theory)
职业:数值线性代数和随机特征分析(随机矩阵理论)之间的协同相互作用
- 批准号:
0847661 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似海外基金
Teasing apart the cellular and molecular pathways that regulate cell size during asymmetric neural precursor cleavages
梳理不对称神经前体分裂过程中调节细胞大小的细胞和分子途径
- 批准号:
BB/X00208X/1 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Determinants of Alzheimer's Disease in Atrial Fibrillation apart from Stroke: The NOMINATE Study
除中风之外的房颤中阿尔茨海默病的决定因素:提名研究
- 批准号:
10433238 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Determinants of Alzheimer's Disease in Atrial Fibrillation apart from Stroke: The NOMINATE Study
除中风之外的房颤中阿尔茨海默病的决定因素:提名研究
- 批准号:
10561657 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Working apart and together, across and between: lessons learned from an Indigenous and non-Indigenous organizational partnership in Indigenous harm reduction research during the COVID-19 pandemic
分开与共同、跨界与相互之间工作:从 COVID-19 大流行期间原住民减害研究中原住民和非原住民组织伙伴关系中汲取的经验教训
- 批准号:
467878 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Collaborative Research: Teasing apart how specific nanoparticle features relate to environmental fate and contribute to ecotoxicity
合作研究:梳理特定纳米颗粒特征如何与环境命运相关并导致生态毒性
- 批准号:
2115080 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Teasing apart the differential impact of variants of concern on COVID-19 severity and health inequities: a population-based genomic epidemiological investigation in Ontario and British Columbia.
梳理所关注的变异对 COVID-19 严重程度和健康不平等的不同影响:安大略省和不列颠哥伦比亚省基于人群的基因组流行病学调查。
- 批准号:
448996 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Operating Grants
Growing Apart: Sex-Specific Plasticity And The Developmental Regulation Of Male And Female Body Size
成长分开:性别特异性可塑性和男性和女性体型的发育调节
- 批准号:
1952385 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Far apart but close at heart: How do arts organisations in Latin America support the mental health of young people online during a global pandemic?
相距遥远但心心相印:拉丁美洲的艺术组织如何在全球大流行期间支持网络年轻人的心理健康?
- 批准号:
AH/V006517/1 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Collaborative Research: Ammonia Phase PARtitioning and Transport (APART)
合作研究:氨相分配和传输 (APART)
- 批准号:
2020127 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Far Apart UK: Looking beyond lockdown to understand how UK arts organisations can continue to support young people's wellbeing during COVID-19
Far Apart UK:超越封锁,了解英国艺术组织如何在 COVID-19 期间继续支持年轻人的福祉
- 批准号:
AH/V015613/1 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant