Many Faces of Transfinite Hierarchies

超限层次结构的多面性

基本信息

  • 批准号:
    2154173
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Strictly speaking, an algorithm is a procedure which can be carried out on a computer, but computability theory also includes more expansive notions of algorithm. A generalized algorithm runs for transfinitely many steps, and even a single step is too hard for an ordinary computer, but this kind of algorithmic thinking gives a useful perspective on mathematics. This project will use the algorithmic perspective of computability theory to analyze various hierarchies from classical analysis, topological dynamics, and descriptive set theory. Sometimes a hierarchy-derived tool, such as the measurability of a Borel set, is less powerful than a full hierarchy analysis, but still strong enough for many purposes. The research will explore this distinction, among other questions. The project will also support the training of graduate students. Theorems about Borel sets are sometimes proved by recursing along the structure of the Borel sets, but more often they are proved via measure or category. When the usual measure and category approaches do not pan out, reverse mathematics provides one framework for formalizing the question of whether any measure or category approach could succeed. This framework will be applied to analyze various theorems about Borel sets, in particular theorems from descriptive combinatorics. Second, the PI will address a number of questions about computability-theoretic properties of hierarchies in classical analysis, such as the Bourgain rank or the hierarchy of Denjoy integrable functions. Finally, shifts of finite type (SFTs) are certain topological dynamical systems which are simply described but exhibit complex behavior, because their dynamics can simulate Turing computations. It is not well understood which properties of the resulting dynamical system can be controlled by these computations. The project aims to develop usable meta-theorems describing classes of algorithms that can be implemented in SFTs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
严格地说,算法是可以在计算机上执行的过程,但可计算性理论还包括更广泛的算法概念。 一个广义的算法要运行很多步骤,即使是一个简单的步骤对普通计算机来说也太难了,但是这种算法思维给了我们一个有用的数学视角。 本专题将使用可计算性理论的算法观点来分析来自古典分析、拓扑动力学和描述集合论的各种层次。 有时,一个层次衍生的工具,如博雷尔集的可测性,不如一个完整的层次分析强大,但仍然足够强大的许多用途。 这项研究将探讨这一区别以及其他问题。 该项目还将支持研究生的培训。关于Borel集的定理有时候是通过沿着Borel集的结构递归来证明的,但更多的时候是通过测度或范畴来证明的。当通常的测量和分类方法不成功时,逆向数学提供了一个框架,用于形式化任何测量或分类方法是否可以成功的问题。 这个框架将被应用于分析各种定理的博雷尔集,特别是定理从描述组合学。 第二,PI将解决一些关于经典分析中层次的可计算性理论性质的问题,例如Bourgain秩或Denjoy可积函数的层次。 最后,有限型移位(SFTs)是一类描述简单但行为复杂的拓扑动力系统,因为它们的动力学可以模拟图灵计算。 目前还不清楚所得到的动力系统的哪些属性可以通过这些计算来控制。 该项目旨在开发可用的元定理,描述可以在SFTs中实现的算法类。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linda Westrick其他文献

Linda Westrick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linda Westrick', 18)}}的其他基金

FRG: Collaborative Research: Computability-Theoretic Aspects of Combinatorics
FRG:协作研究:组合学的可计算性理论方面
  • 批准号:
    1854107
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Developmental links between teeth and faces
合作研究:牙齿和面部之间的发育联系
  • 批准号:
    2235665
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Infants' multimodal experience of faces in everyday environments
婴儿在日常环境中对面部的多模式体验
  • 批准号:
    23K18867
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Collaborative Research: Developmental links between teeth and faces
合作研究:牙齿和面部之间的发育联系
  • 批准号:
    2235578
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research in Economics: Two Experiments on the Behavioral Equivalence of Dirty Faces Games
经济学博士论文研究:脏脸游戏行为等价性的两个实验
  • 批准号:
    2243268
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Dehumanized cognition of masked faces
对蒙面面孔的非人化认知
  • 批准号:
    23K02856
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation of Human Figures / Faces in the works of D. G. Rossetti and Other Writers: Transforming Views of Nature in 19th Century Britain
D.G.罗塞蒂和其他作家作品中人物/面孔的表现:19世纪英国自然观的转变
  • 批准号:
    23K00375
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Faces in Focus: Equipping the National Portrait Gallery's New Conservation Laboratory for Photography, Works on Paper and Miniatures
聚焦面孔:为国家肖像画廊新的摄影、纸上作品和细密画保护实验室配备装备
  • 批准号:
    AH/X01018X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Using secondary data analyses to establish whether face-shape characteristics predict social judgments of faces consistently across world regions
使用二次数据分析来确定面部形状特征是否能够一致地预测世界各地区对面部的社会判断
  • 批准号:
    ES/X000249/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Collaborative Research: Developmental links between teeth and faces
合作研究:牙齿和面部之间的发育联系
  • 批准号:
    2235657
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Vision-based pain detection in masked faces
基于视觉的蒙面面部疼痛检测
  • 批准号:
    572495-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了