Quantitative Studies of Solutions of Partial Differential Equations

偏微分方程解的定量研究

基本信息

  • 批准号:
    2154506
  • 负责人:
  • 金额:
    $ 20.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Laplacian eigenfunctions are the fundamental modes of vibrations which are modeled by the Laplace operator in partial differential equations (PDE). PDE are used to model various phenomena in the physical world. In music, eigenfunctions are, for example, oscillations of a guitar's string or vibrations of a drum's membrane. In mathematics, eigenfunctions are the higher dimensional analogs of the familiar trigonometric functions. In quantum mechanics, eigenfunctions are known as the energy states. The study of nodal sets (that is, zero-level sets) dates back to the eighteenth century with the discovery of the Chladni patterns. These nodal sets are places where a metal plate vibrate the least. In quantum mechanics, nodal sets are where quantum particles are least likely to be found. Understanding the profile of eigenfunctions of a given energy (i.e., eigenvalue) hinges on our ability to answer the following questions: (i) How large are the sizes of level sets of eigenfunctions with respect to the frequency?; and (ii) How does the information about eigenfunctions on some given set propagate to nearby sets? This project provides training opportunities for undergraduate and graduate students, as well as outreach activities aimed at K-12 students and the general public.The research objectives of this project focus on quantitative studies of level sets of eigenfunctions for the Laplace operator and related topics for solutions of PDE. The principal investigator (PI) aims to study the upper bounds on the measure of nodal and singular sets for various Laplace operators on smooth surfaces. The PI will also study bounds on nodal sets of eigenfunctions in periodic elliptic homogenization. This line of investigation will contribute to the understanding of quantitative properties of heterogeneous media. Another research direction that will be pursued as part of the project is the study quantitative unique continuation for elliptic PDE with regular and singular potentials. The outcome will be a better understanding of the strong unique continuation property for various types of PDE. This will lead to a number of applications in inverse problems and control theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拉普拉斯本征函数是振动的基本模式,其由偏微分方程(PDE)中的拉普拉斯算子建模。偏微分方程用于模拟物理世界中的各种现象。在音乐中,本征函数是例如吉他弦的振动或鼓膜的振动。在数学中,本征函数是熟悉的三角函数的高维类似物。在量子力学中,本征函数被称为能态。节点集(即零水平集)的研究可以追溯到18世纪发现的Chladni模式。这些节点集是金属板振动最小的地方。在量子力学中,节点集是最不可能找到量子粒子的地方。理解给定能量的本征函数的轮廓(即,特征值)取决于我们回答以下问题的能力:(i)特征函数的水平集相对于频率的大小是多大?(ii)给定集合上的本征函数信息如何传播到邻近集合?该项目为本科生和研究生提供培训机会,并针对K-12学生和公众开展外联活动,研究目标集中在拉普拉斯算子特征函数水平集的定量研究和偏微分方程解的相关课题。主要研究者(PI)的目的是研究光滑表面上各种拉普拉斯算子的节点集和奇异集的测度上界。PI还将研究周期椭圆均匀化中本征函数节点集的界。这条线的调查将有助于了解非均匀介质的定量属性。另一个研究方向,将追求作为该项目的一部分,是研究定量的唯一延续椭圆PDE与定期和奇异的潜力。其结果将是更好地理解强唯一连续性质的各种类型的偏微分方程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Upper Bound of Critical Sets of Solutions of Elliptic Equations in the Plane
平面上椭圆方程组临界解的上界
  • DOI:
    10.1007/s10013-023-00614-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Zhu, Jiuyi
  • 通讯作者:
    Zhu, Jiuyi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiuyi Zhu其他文献

Qualitative Properties Of Solutions Of Fully Nonlinear Equations And Overdetermined Problems
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiuyi Zhu
  • 通讯作者:
    Jiuyi Zhu
Improved Moser-Trudinger Inequality Involving Lp Norm in n Dimensions
  • DOI:
    10.1515/ans-2014-0202
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Jiuyi Zhu
  • 通讯作者:
    Jiuyi Zhu
Interior nodal sets of Steklov eigenfunctions on surfaces
表面上 Steklov 特征函数的内部节点集
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiuyi Zhu
  • 通讯作者:
    Jiuyi Zhu
Quantitative uniqueness of elliptic equations
椭圆方程的定量唯一性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiuyi Zhu
  • 通讯作者:
    Jiuyi Zhu
One-step gas-phase syntheses of few-layered single-phase Ti2NCl2 and Ti2CCl2 MXenes with high stabilities
具有高稳定性的少层单相 Ti2NCl2 和 Ti2CCl2 MXenes 的一步气相合成
  • DOI:
    10.1038/s41467-024-54815-9
  • 发表时间:
    2024-11-28
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Fen Yue;Maoqiao Xiang;Jie Zheng;Jiuyi Zhu;Jiake Wei;Puheng Yang;Hebang Shi;Qinghua Dong;Wenjun Ding;Chenchen Chen;Yafeng Yang;Chuanfang John Zhang;Huigang Zhang;Qingshan Zhu
  • 通讯作者:
    Qingshan Zhu

Jiuyi Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiuyi Zhu', 18)}}的其他基金

RII Track-4: Uniqueness and Quantitative Uniqueness of Solutions to Partial Differential Equations
RII Track-4:偏微分方程解的唯一性和定量唯一性
  • 批准号:
    1832961
  • 财政年份:
    2018
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Standard Grant
Quantitative and Qualitative properties of solutions of partial differential equations
偏微分方程解的定量和定性性质
  • 批准号:
    1656845
  • 财政年份:
    2016
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Standard Grant
Quantitative and Qualitative properties of solutions of partial differential equations
偏微分方程解的定量和定性性质
  • 批准号:
    1500468
  • 财政年份:
    2015
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Standard Grant

相似海外基金

Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
  • 批准号:
    23KJ2028
  • 财政年份:
    2023
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ultrafast 2DIR Studies of Dynamics in Dense Gas and Supercritical Fluid Solutions
稠密气体和超临界流体溶液动力学的超快 2DIR 研究
  • 批准号:
    2102427
  • 财政年份:
    2021
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Continuing Grant
Studies of split-step quantum walks by Jost solutions
Jost解的分步量子行走研究
  • 批准号:
    21K13846
  • 财政年份:
    2021
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Studies on degradation and durability of Cd-free quantum dot solutions, films, and LEDs
无镉量子点解决方案、薄膜和 LED 的降解和耐久性研究
  • 批准号:
    19H02556
  • 财政年份:
    2019
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adsorptive Absorption Studies of Carbon Dioxide Capture Using Novel Functionalized Zeolites and ZIFs in Solutions of Ionic Liquids and Amines
在离子液体和胺溶液中使用新型功能化沸石和 ZIF 捕获二氧化碳的吸附吸收研究
  • 批准号:
    DDG-2016-00041
  • 财政年份:
    2017
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Discovery Development Grant
Studies on Electrochemical Magnesium Storage/release Properties in Carbonate Ester-based Electrolyte Solutions
碳酸酯基电解质溶液电化学镁储存/释放性能研究
  • 批准号:
    16K05959
  • 财政年份:
    2016
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interfacial ordering in aqueous solutions: X-ray scattering studies
水溶液中的界面有序性:X 射线散射研究
  • 批准号:
    1612876
  • 财政年份:
    2016
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Standard Grant
Adsorptive Absorption Studies of Carbon Dioxide Capture Using Novel Functionalized Zeolites and ZIFs in Solutions of Ionic Liquids and Amines
在离子液体和胺溶液中使用新型功能化沸石和 ZIF 捕获二氧化碳的吸附吸收研究
  • 批准号:
    DDG-2016-00041
  • 财政年份:
    2016
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Discovery Development Grant
Studies on global behavior of solutions to linear differential equations and isomonodromic deformations
线性微分方程和等单向变形解的全局行为研究
  • 批准号:
    25800082
  • 财政年份:
    2013
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A studies on existence, asymptotic behavior of solutions and invariant measure to stochastic wave equations
随机波动方程解的存在性、渐近行为及不变测度研究
  • 批准号:
    24540198
  • 财政年份:
    2012
  • 资助金额:
    $ 20.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了