RII Track-4: Uniqueness and Quantitative Uniqueness of Solutions to Partial Differential Equations
RII Track-4:偏微分方程解的唯一性和定量唯一性
基本信息
- 批准号:1832961
- 负责人:
- 金额:$ 16.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical DescriptionMathematics provides essential tools for the description and investigation of numerous real-life problems. Rate of change, which is the derivative in mathematics, is fundamental in these problems. Partial differential equations (PDEs) are differential equations that relate unknown multivariable functions and their partial derivatives. They describe a wide variety of seemingly distinct physical phenomena such as sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, or quantum mechanics. Because of this, PDEs play a prominent role in many disciplines including engineering, physics, economics, and biology. One of the central problems in the study of PDEs is about uniqueness and its quantitative properties. The fellowship builds a collaboration between Louisiana State University (LSU) and University of Chicago (UChi) by enabling the PI to make extended research visits to UChi. This project will lead to advancements in understanding uniqueness of PDEs, stimulate the PI's research capacity, strengthen the research program in PDEs and analysis at LSU, and benefit its undergraduate and graduate education.Technical DescriptionThe goal of this research is to investigate the quantitative and qualitative properties of uniqueness of solutions to PDEs. Providing quantitative and qualitative information for the solutions is essential in the study of PDEs, which lies in the core of mathematical analysis. Often the most effective way to obtain such information is to first explore the quantitative and qualitative properties of solutions of the equations and then to develop algorithms in accordance; this is a beneficial alternative to the challenge of instead solving PDEs computationally with sufficient accuracy. Quantitative uniqueness, a recent fast-developing area, describes the quantitative behavior of the strong unique continuation property. The proposed research is to study the quantitative uniqueness for elliptic PDEs with singular weights. The outcome will provide a deeper understanding of the strong unique continuation property for this category of PDEs. It is important and interesting to study how exactly the information on a small open set propagates to any other open sets in the domain, which quantifies the weak unique continuation property. Such exploration will lead to many applications in inverse problems and control theory. The PI will explore how the coefficient functions determine the uniqueness and how the shape of the domain influences the uniqueness of solutions for parabolic PDEs. The project will contribute the fundamental understanding of elliptic and parabolic partial differential equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述数学为描述和研究许多现实生活中的问题提供了必要的工具。变化率是数学中的导数,在这些问题中是基本的。偏微分方程(PDE)是一类涉及未知多变量函数及其偏导数的微分方程。它们描述了各种各样看似截然不同的物理现象,如声、热、静电学、电动力学、流体动力学、弹性或量子力学。正因为如此,偏微分方程组在工程学、物理学、经济学和生物学等许多学科中都扮演着重要的角色。偏微分方程解的唯一性及其定量性质是研究的核心问题之一。该奖学金在路易斯安那州立大学(LSU)和芝加哥大学(Uchi)之间建立了合作关系,使PI能够对Uchi进行长期的研究访问。该项目将促进对偏微分方程组的独特性的理解,激发其研究能力,加强路易斯安那州立大学在偏微分方程组和分析方面的研究计划,并有利于其本科生和研究生教育。在偏微分方程组的研究中,为解提供定量和定性的信息是必不可少的,而偏微分方程组的研究是数学分析的核心。通常,获取此类信息的最有效方法是首先探索方程解的定量和定性属性,然后根据需要开发算法;这是以足够的精度通过计算求解偏微分方程组的挑战的有益替代方案。数量唯一性是近年来发展很快的一个领域,它描述了强唯一延拓性质的数量行为。研究具有奇异权的椭圆型偏微分方程解的数量唯一性。这一结果将加深对这类偏微分方程强的唯一延拓性的理解。研究一个小开集上的信息如何准确地传播到区域中的任何其他开集上是非常重要和有趣的,它量化了弱唯一连续性质。这样的探索将在反问题和控制理论中有许多应用。PI将探索系数函数如何决定唯一性,以及区域的形状如何影响抛物型偏微分方程解的唯一性。该项目将有助于对椭圆型和抛物型偏微分方程式的基本理解。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometry and interior nodal sets of Steklov eigenfunctions
Steklov 特征函数的几何和内部节点集
- DOI:10.1007/s00526-020-01815-4
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Zhu, Jiuyi
- 通讯作者:Zhu, Jiuyi
Doubling inequalities and nodal sets in periodic elliptic homogenization
- DOI:10.1080/03605302.2021.1989699
- 发表时间:2021-01
- 期刊:
- 影响因子:1.9
- 作者:C. Kenig;Jiuyi Zhu;Jinping Zhuge
- 通讯作者:C. Kenig;Jiuyi Zhu;Jinping Zhuge
Doubling inequalities and critical sets of Dirichlet eigenfunctions
加倍不等式和狄利克雷本征函数的临界集
- DOI:10.1016/j.jfa.2021.109155
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Zhu, Jiuyi
- 通讯作者:Zhu, Jiuyi
Quantitative uniqueness of solutions to second-order elliptic equations with singular lower order terms
- DOI:10.1080/03605302.2019.1629957
- 发表时间:2017-02
- 期刊:
- 影响因子:1.9
- 作者:Blair Davey;Jiuyi Zhu
- 通讯作者:Blair Davey;Jiuyi Zhu
Upper bounds of nodal sets for eigenfunctions of eigenvalue problems
特征值问题的特征函数的节点集上限
- DOI:10.1007/s00208-020-02098-y
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Lin, Fanghua;Zhu, Jiuyi
- 通讯作者:Zhu, Jiuyi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiuyi Zhu其他文献
Qualitative Properties Of Solutions Of Fully Nonlinear Equations And Overdetermined Problems
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jiuyi Zhu - 通讯作者:
Jiuyi Zhu
Improved Moser-Trudinger Inequality Involving Lp Norm in n Dimensions
- DOI:
10.1515/ans-2014-0202 - 发表时间:
2014-05 - 期刊:
- 影响因子:1.8
- 作者:
Jiuyi Zhu - 通讯作者:
Jiuyi Zhu
Interior nodal sets of Steklov eigenfunctions on surfaces
表面上 Steklov 特征函数的内部节点集
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jiuyi Zhu - 通讯作者:
Jiuyi Zhu
Quantitative uniqueness of elliptic equations
椭圆方程的定量唯一性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jiuyi Zhu - 通讯作者:
Jiuyi Zhu
One-step gas-phase syntheses of few-layered single-phase Ti2NCl2 and Ti2CCl2 MXenes with high stabilities
具有高稳定性的少层单相 Ti2NCl2 和 Ti2CCl2 MXenes 的一步气相合成
- DOI:
10.1038/s41467-024-54815-9 - 发表时间:
2024-11-28 - 期刊:
- 影响因子:15.700
- 作者:
Fen Yue;Maoqiao Xiang;Jie Zheng;Jiuyi Zhu;Jiake Wei;Puheng Yang;Hebang Shi;Qinghua Dong;Wenjun Ding;Chenchen Chen;Yafeng Yang;Chuanfang John Zhang;Huigang Zhang;Qingshan Zhu - 通讯作者:
Qingshan Zhu
Jiuyi Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiuyi Zhu', 18)}}的其他基金
Quantitative Studies of Solutions of Partial Differential Equations
偏微分方程解的定量研究
- 批准号:
2154506 - 财政年份:2022
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
Quantitative and Qualitative properties of solutions of partial differential equations
偏微分方程解的定量和定性性质
- 批准号:
1656845 - 财政年份:2016
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
Quantitative and Qualitative properties of solutions of partial differential equations
偏微分方程解的定量和定性性质
- 批准号:
1500468 - 财政年份:2015
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 16.66万 - 项目类别:
Standard Grant