CAS: Mechanistic Studies on How to Maximize Dipole Effects on Charge Transfer

CAS:如何最大化电荷转移偶极子效应的机理研究

基本信息

  • 批准号:
    2154609
  • 负责人:
  • 金额:
    $ 47.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Structure, Dynamics & Mechanisms B Program of the Chemistry Division, Professor Valentine Vullev of the Departments of Bioengineering, Chemistry and Biochemistry at the University of California, Riverside, is developing new ways for improving the efficiency of desired charge-transferring processes while suppressing the undesired ones that lead, for example, to losses in solar-energy-conversion devices and materials. Charge transfer processes are essential, not only for sustaining life on Earth, but also for many modern technologies such as solar energy capture. Electric dipoles inherently affect charge transfer. The ubiquitous nature of dipoles, therefore, warrants deep understanding of their effects on charge transfer. Professor Vullev's group will develop optical approaches for probing and mapping the localized nanometer-scale electric fields around dipoles. Such knowledge would allow the Vullev team to quantify the dipole effects on charge transfer and to map out ways to benefit from such effects. The project lies at the interface of organic chemistry and bio-inspired molecular engineering, and is expected to provide research team member with valuable interdisciplinary training. The Vullev research group is active in outreach activities involving K-12 students, and aspires to include students from groups that have been underserved in science. This project has two objectives: (1) to develop spectroscopic approaches, using electrochromism, i.e., optical Stark effects, for probing and mapping molecular dipoles. This knowledge will allow experimental quantification of the extent to which the potentials of the electron donors and the acceptors are affected by the dipole-generated fields; (2) to study how dipole magnitude and orientation influence charge-transfer kinetics. A key pending question that this project seeks to address is the extent to which dipole effects on the rates of charge transfer change for processes with different thermodynamic driving forces, in relevance to the reorganization energy. Bio-inspired molecular electrets (systems with ordered electric dipoles) composed of different anthranilamide residues are the key structural motif for the systems designed for study in this project. In the long term, this project aims to establish important structure-function relationships for optimizing charge transfer processes of interest, allowing the molecular engineer to suppress undesired events, such as charge recombination, in the design of the system. If successful, the results this research project could impact a broad range of scientific areas, including energy conversion, bioenergetics, molecular and organic electronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学机制B项目的支持下,加州大学滨江分校生物工程、化学和生物化学系的Valentine Vullev教授正在开发新的方法,以提高所需电荷转移过程的效率,同时抑制导致太阳能转换设备和材料损失的不必要过程。电荷转移过程不仅对维持地球上的生命至关重要,而且对许多现代技术,如太阳能捕获也至关重要。电偶极子固有地影响电荷转移。因此,偶极子的普遍存在的性质,保证深入了解其对电荷转移的影响。Vullev教授的小组将开发光学方法来探测和绘制偶极子周围的局部纳米级电场。这些知识将使Vullev团队能够量化电荷转移的偶极效应,并制定出从这种效应中受益的方法。该项目位于有机化学和生物启发分子工程的接口,预计将为研究团队成员提供有价值的跨学科培训。 Vullev研究小组积极参与涉及K-12学生的外联活动,并希望包括来自科学服务不足的群体的学生。 该项目有两个目标:(1)开发光谱方法,利用电致变色,即,光学斯塔克效应,用于探测和映射分子偶极子。这方面的知识将允许实验量化的程度,电子供体和受体的电位的偶极产生的领域的影响;(2)研究如何偶极的大小和方向影响电荷转移动力学。一个关键的悬而未决的问题,该项目旨在解决的是在何种程度上偶极效应的电荷转移率的变化与不同的热力学驱动力的过程中,在相关的重组能量。由不同邻氨基苯甲酰胺残基组成的生物启发分子驻极体(具有有序电偶极子的系统)是本项目所设计研究的系统的关键结构基序。 从长远来看,该项目旨在建立重要的结构-功能关系,以优化感兴趣的电荷转移过程,使分子工程师能够在系统设计中抑制不期望的事件,如电荷重组。如果成功的话,这个研究项目的成果将影响广泛的科学领域,包括能量转换、生物能量学、分子和有机电子学。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valentine Vullev其他文献

Valentine Vullev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valentine Vullev', 18)}}的其他基金

Mechanistic Studies of Dipole Effects on Electronic Coupling in Charge Transfer Implemented as Photoinduced Dynamics of Intramolecular Hole Hopping
电荷转移中电子耦合偶极子效应的机理研究作为分子内空穴跳跃的光致动力学实现
  • 批准号:
    1800602
  • 财政年份:
    2018
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Standard Grant
Mechanistic aspects of dipole-mediated intramolecular electron transfer: Study of the photoinduced dynamics of charge hopping in anthranilamide structures
偶极子介导的分子内电子转移的机理:邻氨基苯甲酰胺结构中电荷跳跃的光致动力学研究
  • 批准号:
    1465284
  • 财政年份:
    2015
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Standard Grant
EAGER: Bioinspired Electrets for Solar-Energy-Conversion Applications
EAGER:用于太阳能转换应用的仿生驻极体
  • 批准号:
    0935995
  • 财政年份:
    2009
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Ultrafast Spectroscopy System for Biological and Engineering Research
MRI:获取用于生物和工程研究的超快光谱系统
  • 批准号:
    0923408
  • 财政年份:
    2009
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Standard Grant

相似海外基金

CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Continuing Grant
Catalytic Combustion of Ammonia as a Zero-Carbon Fuel: Catalyst Design and Mechanistic Studies
氨作为零碳燃料的催化燃烧:催化剂设计和机理研究
  • 批准号:
    EP/X03593X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Research Grant
Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
  • 批准号:
    10667862
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
  • 批准号:
    10736228
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
Hyperpolarization Catalysts for in situ Mechanistic Studies
用于原位机理研究的超极化催化剂
  • 批准号:
    2324961
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Standard Grant
Optimizing methods of clinical sample processing for scRNA-seq and mechanistic studies in sepsis to enable reliable, reproducible, and high-yield multi-center collection efforts
优化脓毒症 scRNA-seq 和机制研究的临床样本处理方法,以实现可靠、可重复和高产的多中心采集工作
  • 批准号:
    10571958
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
Antimicrobial Resistance: Breakthrough Compound Discovery through Mechanistic Studies combined with Bicycle Technology and Target Validation
抗菌素耐药性:通过机理研究结合自行车技术和目标验证实现突破性化合物发现
  • 批准号:
    BB/Y003306/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Research Grant
Applications of the long-term culture human primordial germ cell-like cells to toxicological assessments and mechanistic studies on chemically caused heritable human health threats
长期培养人类原始生殖细胞样细胞在化学引起的遗传性人类健康威胁的毒理学评估和机制研究中的应用
  • 批准号:
    10666200
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
CAREER: Structural and mechanistic studies of RNA-mediated enteroviral genome replication
职业:RNA介导的肠道病毒基因组复制的结构和机制研究
  • 批准号:
    2236996
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design and mechanistic studies on microenvironment-sensitive polymeric nanoparticles for simultaneous contents release and ultrasound imaging
合作研究:微环境敏感聚合物纳米粒子的设计和机理研究,用于同时释放内容物和超声成像
  • 批准号:
    2322963
  • 财政年份:
    2023
  • 资助金额:
    $ 47.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了