Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
基本信息
- 批准号:10667862
- 负责人:
- 金额:$ 66.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-23 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiActive SitesAmino AcidsAnti-Bacterial AgentsAspartic AcidBacillus anthracisBacterial Drug ResistanceBindingBypassCell DeathCell Death InductionCellsCiprofloxacinClinicalComplexDNADNA DamageDNA Double Strand BreakDNA MaintenanceDNA Topoisomerase IVDouble EffectDrug InteractionsDrug resistanceDrug usageEnzyme InhibitionEnzymesEscherichia coliFluoroquinolonesFrancisella tularensisGenetic MaterialsGenomeGoalsHandednessHealthHumanIn VitroIncidenceIonsLaboratoriesLibrariesLigationMediatingMetalsMonitorMutationMycobacterium tuberculosisNeisseria gonorrhoeaeNeurofibrillary TanglesNew AgentsOralPharmaceutical PreparationsPhase III Clinical TrialsPhysiologicalPositioning AttributePublishingResearchResistanceRoleSerineSingle-Stranded DNASiteStaphylococcus aureusStructureSuperhelical DNASystemTopoisomerase IITopoisomerase InhibitorsToxinWaterWorld Health Organizationantimicrobialbacterial resistancecellular targetingclinical efficacydrug actionfluoroquinolone resistancein vitro activityin vivomembermutantnovelpathogenresistance mechanismtargeted agent
项目摘要
Fluoroquinolones, such as ciprofloxacin, are among the most efficacious and broad-spectrum oral
antibacterials in clinical use. The World Health Organization lists them in their five “Highest Priority Critically
Important Antimicrobials,” and these drugs are the most heavily prescribed antibacterials worldwide.
The cellular targets of fluoroquinolones are the bacterial type II topoisomerases, gyrase and topoisomerase IV.
These essential enzymes regulate DNA under- and overwinding and remove knots and tangles from the genome
by generating transient double-stranded breaks in the genetic material. Fluoroquinolones act by increasing levels
of double-stranded DNA breaks generated by gyrase and topoisomerase IV, which converts these enzymes into
cellular toxins that fragment the genome. Although gyrase and topoisomerase IV are both physiological targets
for fluoroquinolones, their relative importance to drug action appears to be species- and drug-dependent.
There is a growing crisis in antibacterial resistance and fluoroquinolone resistance is becoming prevalent. This
resistance is threatening the clinical efficacy of fluoroquinolones. Initial fluoroquinolone resistance is most often
associated with specific mutations in gyrase and/or topoisomerase IV that occur at a serine residue (originally
described as Ser83 in the GyrA subunit of Escherichia coli gyrase) and a glutamic/aspartic acid residue 4 amino
acids downstream. Based on a published structure and functional studies from the Osheroff laboratory, these
residues are proposed to anchor a water-metal ion bridge that serves as the primary conduit between fluoro-
quinolones and gyrase/topoisomerase IV.
The identification and characterization of novel agents that act against these well-validated enzyme targets
and overcome fluoroquinolone resistance could have important health ramifications. Recently, two new classes
of gyrase/topoisomerase IV-targeted agents have been described that appear to overcome this resistance, Novel
Bacterial Topoisomerase Inhibitors (NBTIs) and Spiropyrimidinetriones (SPTs). Members of these classes,
gepotidacin (NBTI) and zoliflodacin (SPT), have advanced to Phase 3 clinical trials. NBTIs are unique, as they
induce single- rather than double-stranded enzyme-generated DNA breaks. However, little is known about the
actions of NBTIs and SPTs against gyrase/topoisomerase IV or the mechanism of drug resistance.
There is an urgent need to identify drugs that display activity against fluoroquinolone-resistant bacteria. Thus,
the goals of this project are to further define the mechanism of action of fluoroquinolones, NBTIs, and SPTs against
gyrase and topoisomerase IV in vivo and in cells, to characterize the basis of target-mediated drug resistance,
and to identify novel compounds that overcome resistance. Research will benefit from the broad library of wild-
type and drug-resistant gyrase/topoisomerase IV available in the Osheroff laboratory, which includes enzymes
from Bacillus anthracis, E. coli, Staphylococcus aureus, Mycobacterium tuberculosis, Neisseria gonorrhoeae,
Francisella tularensis, and Acinetobacter baumannii. These pathogens have substantial effects on human health.
氟喹诺酮类药物,如环丙沙星,是最有效、最广谱的口服药物之一
临床上使用的抗菌药物。世界卫生组织将其列为五个“最重要的优先事项”
重要的抗菌药物”,这些药物是全世界处方最多的抗菌药物。
氟喹诺酮类药物的细胞靶点是细菌 II 型拓扑异构酶、旋转酶和 IV 型拓扑异构酶。
这些必需的酶可调节 DNA 的缠绕和缠绕,并消除基因组中的结和缠结
通过在遗传物质中产生短暂的双链断裂。氟喹诺酮类药物通过增加水平发挥作用
由旋转酶和拓扑异构酶 IV 产生的双链 DNA 断裂,将这些酶转化为
使基因组片段化的细胞毒素。尽管旋转酶和拓扑异构酶 IV 都是生理靶标
对于氟喹诺酮类药物,它们对药物作用的相对重要性似乎取决于物种和药物。
抗菌药物耐药性危机日益严重,氟喹诺酮类药物耐药性日益普遍。这
耐药性正在威胁氟喹诺酮类药物的临床疗效。最初的氟喹诺酮类药物耐药性最常见
与发生在丝氨酸残基处的旋转酶和/或拓扑异构酶 IV 的特定突变相关(最初
大肠杆菌促旋酶 GyrA 亚基中的 Ser83)和谷氨酸/天冬氨酸残基 4 个氨基
酸下游。基于 Osheroff 实验室发表的结构和功能研究,这些
建议残留物锚定水-金属离子桥,作为氟-金属离子之间的主要管道。
喹诺酮类和旋转酶/拓扑异构酶 IV。
针对这些经过充分验证的酶靶标的新型药物的鉴定和表征
克服氟喹诺酮耐药性可能会对健康产生重要影响。最近新开两个班
旋转酶/拓扑异构酶 IV 靶向药物已被描述,似乎可以克服这种耐药性,新颖
细菌拓扑异构酶抑制剂 (NBTI) 和螺嘧啶三酮 (SPT)。这些班级的成员,
gepotidacin(NBTI)和zoliflodacin(SPT)已进入3期临床试验。 NBTI 是独一无二的,因为它们
诱导单链而不是双链酶产生的 DNA 断裂。然而,人们对此知之甚少
NBTIs 和 SPTs 对旋转酶/拓扑异构酶 IV 的作用或耐药机制。
迫切需要鉴定对氟喹诺酮耐药细菌具有活性的药物。因此,
该项目的目标是进一步明确氟喹诺酮类药物、NBTI 和 SPT 的作用机制
体内和细胞中的旋转酶和拓扑异构酶 IV,以表征靶标介导的耐药性的基础,
并鉴定克服耐药性的新化合物。研究将受益于广泛的野生图书馆
Osheroff 实验室提供类型和耐药性旋转酶/拓扑异构酶 IV,其中包括酶
来自炭疽杆菌、大肠杆菌、金黄色葡萄球菌、结核分枝杆菌、淋病奈瑟菌、
土拉弗朗西斯菌和鲍曼不动杆菌。这些病原体对人类健康具有重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NEIL OSHEROFF其他文献
NEIL OSHEROFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NEIL OSHEROFF', 18)}}的其他基金
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10364870 - 财政年份:2018
- 资助金额:
$ 66.89万 - 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10533336 - 财政年份:2018
- 资助金额:
$ 66.89万 - 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10079499 - 财政年份:2018
- 资助金额:
$ 66.89万 - 项目类别:
REGULATION OF CASEIN KINASE II BY EGF IN MAMMALIAN CELLS
哺乳动物细胞中 EGF 对酪蛋白激酶 II 的调节
- 批准号:
6236860 - 财政年份:1996
- 资助金额:
$ 66.89万 - 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
- 批准号:
2415346 - 财政年份:1996
- 资助金额:
$ 66.89万 - 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
- 批准号:
2910216 - 财政年份:1996
- 资助金额:
$ 66.89万 - 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
- 批准号:
6386305 - 财政年份:1996
- 资助金额:
$ 66.89万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 66.89万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 66.89万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 66.89万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 66.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 66.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 66.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 66.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 66.89万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 66.89万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 66.89万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




