Boosting Density Embedding with Machine Learning and Nonstandard Workflows
通过机器学习和非标准工作流程提高嵌入密度
基本信息
- 批准号:2154760
- 负责人:
- 金额:$ 46.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Professor Michele Pavanello of Rutgers University-Newark is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to model molecular condensed phases and materials from first principles. Pavanello and his research group will develop open-source software encoding first-principles Quantum Mechanics for the prediction of materials properties and their rational design. The methods will exploit state-of-the-art machine learning and divide-and-conquer algorithms to speed up the computational time without compromising on the accuracy and rigorousness of the approaches. Pavanello will apply the newly developed methods to open problems in catalysis by computationally predicting reaction paths and in materials engineering by predicting charge mobilities and polymorphism. The scientific advances will be complemented by a strong outreach program aimed at training high school students from unrepresented minority school districts in computer coding (Python bootcamps) building on already-established programs between Rutgers-Newark and nearby school districts.Professor Michele Pavanello and his research group will develop density functional theory embedding methods aimed at computing the electronic structure of materials and molecular condensed phases tackling open problems ranging from catalysis to charge mobility in molecular semiconductors. The project will consist of: (1) boost DFT embedding employing machine learned Kohn-Sham one-electron reduced density matrices to access system sizes beyond the nanoscale; (2) develop an adaptive embedding method that defines in real time the most accurate subsystem topology for the simulation and is capable of running ab initio dynamics for applications to catalysis and other chemical processes; and (3) develop nonstandard workflows for “hybrid” embedding schemes, such as Kohn-Sham DFT embedded in orbital-free DFT to tackle nanoscale metallic subsystems, wavefunction theory in DFT for applications to charged condensed-phase systems and prediction of crystal polymorphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罗格斯大学纽瓦克分校的Michele Pavanello教授获得了化学系化学理论,模型和计算方法项目的奖项,以从第一原理模拟分子凝聚相和材料。Pavanello和他的研究小组将开发编码第一原理量子力学的开源软件,用于预测材料特性及其合理设计。这些方法将利用最先进的机器学习和分治算法来加快计算时间,而不会影响方法的准确性和严谨性。Pavanello将应用新开发的方法通过计算预测反应路径来解决催化领域的问题,并通过预测电荷迁移率和多态性来解决材料工程领域的问题。科学进步将得到一个强大的外展计划的补充,该计划旨在培训来自无人代表的少数族裔学区的高中生进行计算机编码(Python训练营)建立在罗格斯大学之间已经建立的程序上-纽瓦克和附近的学区。米歇尔·帕瓦内洛教授和他的研究小组将开发密度泛函理论嵌入方法,旨在计算材料和分子凝聚相的电子结构解决从催化到分子半导体中的电荷迁移率的开放问题。该项目将包括:(2)开发一种自适应嵌入方法,该方法在真实的时间中定义用于模拟的最准确的子系统拓扑,并且能够运行用于催化和其他化学过程的应用的从头算动力学;以及(3)开发用于“混合”嵌入方案的非标准工作流程,例如嵌入无轨道DFT中的Kohn-Sham DFT以处理纳米级金属子系统,DFT中的波函数理论在带电凝聚态中的应用该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entropy is a good approximation to the electronic (static) correlation energy
熵是电子(静态)相关能的良好近似
- DOI:10.1063/5.0171981
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Martinez B, Jessica A.;Shao, Xuecheng;Jiang, Kaili;Pavanello, Michele
- 通讯作者:Pavanello, Michele
Imposing correct jellium response is key to predict the density response by orbital-free DFT
- DOI:10.1103/physrevb.108.235168
- 发表时间:2023-04
- 期刊:
- 影响因子:3.7
- 作者:Z. Moldabekov;Xuecheng Shao;M. Pavanello;J. Vorberger;Frank Graziani;T. Dornheim
- 通讯作者:Z. Moldabekov;Xuecheng Shao;M. Pavanello;J. Vorberger;Frank Graziani;T. Dornheim
Linear-response time-dependent density functional theory approach to warm dense matter with adiabatic exchange-correlation kernels
- DOI:10.1103/physrevresearch.5.023089
- 发表时间:2023-02
- 期刊:
- 影响因子:4.2
- 作者:Z. Moldabekov;M. Pavanello;Maximilian P. Boehme;J. Vorberger;T. Dornheim
- 通讯作者:Z. Moldabekov;M. Pavanello;Maximilian P. Boehme;J. Vorberger;T. Dornheim
Adaptive Subsystem Density Functional Theory
自适应子系统密度泛函理论
- DOI:10.1021/acs.jctc.2c00698
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:Shao, Xuecheng;Lopez, Andres Cifuentes;Khan Musa, Md Rajib;Nouri, Mohammad Reza;Pavanello, Michele
- 通讯作者:Pavanello, Michele
Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory
- DOI:10.1103/physrevresearch.4.043033
- 发表时间:2022-10-17
- 期刊:
- 影响因子:4.2
- 作者:Fiedler, Lenz;Moldabekov, Zhandos A.;Cangi, Attila
- 通讯作者:Cangi, Attila
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Pavanello其他文献
Michele Pavanello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Pavanello', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Performance Computing Cluster for Research and Teaching at Rutgers University-Newark
MRI:罗格斯大学纽瓦克分校采购高性能计算集群用于研究和教学
- 批准号:
2117429 - 财政年份:2021
- 资助金额:
$ 46.41万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Flexible & Open-Source Models for Materials and Devices
合作研究:要素:灵活
- 批准号:
1931473 - 财政年份:2019
- 资助金额:
$ 46.41万 - 项目类别:
Standard Grant
CAREER: CDS&E: Nonlocal and Periodic Density Embedding
职业:CDS
- 批准号:
1553993 - 财政年份:2016
- 资助金额:
$ 46.41万 - 项目类别:
Continuing Grant
CNIC: US-France-Israel Planning Visit for a Theory-Experiment Collaboration on Electron and Exciton Transfer from Molecular to Nanoscale
CNIC:美国-法国-以色列计划访问电子和激子从分子到纳米尺度的转移理论实验合作
- 批准号:
1404739 - 财政年份:2014
- 资助金额:
$ 46.41万 - 项目类别:
Standard Grant
相似海外基金
Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
- 批准号:
EP/Y035038/1 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Research Grant
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
- 批准号:
2321862 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Cooperative Agreement
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Standard Grant
Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
- 批准号:
24K06988 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
- 批准号:
2415034 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Continuing Grant
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
- 批准号:
2347542 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Standard Grant
Room Temperature High Energy Density Sodium-Sulfur Batteries
室温高能量密度钠硫电池
- 批准号:
DP240101548 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Discovery Projects
New water-inserted perovskites for high-current-density water electrolysis
用于高电流密度水电解的新型插水钙钛矿
- 批准号:
DE240101013 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Discovery Early Career Researcher Award
Revolutionizing Tactile AI: Developing a Soft, Liquid-Structured, High Density, 3-Axis Tactile Sensor
彻底改变触觉 AI:开发柔软、液体结构、高密度、3 轴触觉传感器
- 批准号:
24K20874 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
- 批准号:
EP/Z530657/1 - 财政年份:2024
- 资助金额:
$ 46.41万 - 项目类别:
Research Grant














{{item.name}}会员




