ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries

ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制

基本信息

项目摘要

This is an NSF Engineering Research Initiation award. All-solid-state batteries utilizing solid state electrolytes along with Li-metal anode are notable for their improved safety and potential to achieve simultaneously high energy, power, and longevity. Ionogels, formed by confinement of ionic liquids within ionic conductive polymers and/or ceramics, show a unique combination of favorable properties as solid electrolytes. However, their achievable power density and cycling stability remains notably inferior, owing primarily to the lack of understanding of Li-ion transport mechanisms. The project will develop a series of designed three-phase ionogel systems where each phase will be modified to promote fast Li-ion transport. The mechanistic understanding will elucidate the true Li-ion transport path and tortuosity, guiding the design of structure and chemistry of ionogel-based solid electrolytes and interlayers for high performance solid-state batteries. In addition, this project will integrate research and education for fostering interdisciplinary learnings in STEM areas. Education in Energy Storage and Conversion technology will raise more awareness of carbon neutrality and inspire younger generations to explore technical solutions for a more sustainable future.The goal of this proposal is to elucidate the local Li-ion transport mechanisms influenced by the interaction of different lithophilic environments within ternary ionogel solid electrolytes. The lithophilic molecular environments will be created through ternary ionogel platforms composed of ionic liquid where moving anions can coordinate with Li-ions, polymer scaffolds functionalized with different lithophilic groups which weakly coordinate with Li-ions for rapid Li-ion transport across and along the polymer phase, as well as ceramic nanofillers grafted with lithophilic ligands for facile Li-ion transport along the ceramic phase. These mechanistic understandings will elucidate a) the types of association and dissociation between Li cations and lithophilic anions and the competitive or cooperative interaction between them; b) the true Li-ion dissociation and Li-ion transport at different intrinsic interphases, which will determine the efficient Li-ion transport pathways and tortuosity within the ternary ionogel solid electrolyte featuring diverse intrinsic interphases; and c) the conversion from bi-ion conducting to single-ion conducting systems through effective immobilization of anions by the functional ligands grafted to the ceramic phase. The mechanistic insights will provide the design principles for regulating and accelerating Li-ion transport at various interphases and interfaces through the design of favorable lithophilic molecular environments. The research has potentially transformative impact for offering crucial insights and steering future research efforts toward scalable production of ionogel solid electrolytes and interlayers for high-power-density and high-energy-density all solid-state batteries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是美国国家科学基金会工程研究启动奖。使用固态电解液和锂金属负极的全固态电池以其更高的安全性和同时实现高能量、功率和寿命的潜力而闻名。离子凝胶是由离子液体限制在离子导电聚合物和/或陶瓷中形成的,它显示出与固体电解质一样的良好性能的独特组合。然而,它们可实现的功率密度和循环稳定性仍然明显较差,这主要是因为对锂离子的传输机制缺乏了解。该项目将开发一系列设计的三相离子凝胶系统,其中每一相都将进行修改,以促进锂离子的快速传输。这种机理的理解将阐明锂离子的真实传输路径和曲折,指导高性能固态电池离子凝胶基固体电解质和过渡层的结构和化学设计。此外,该项目将整合研究和教育,以促进STEM领域的跨学科学习。能量存储和转换技术的教育将提高更多的碳中和意识,并激励年轻一代探索更可持续的未来的技术解决方案。这项建议的目的是阐明三元离子凝胶固体电解质中不同亲石环境相互作用对局部锂离子传输机制的影响。亲石分子环境将通过由离子液体组成的三元离子凝胶平台(其中移动的阴离子可以与锂离子配位)、具有不同亲石基团的聚合物支架(其与锂离子弱配位以促进锂离子在聚合物相中和沿聚合物相的快速传输)以及与亲石配体接枝的陶瓷纳米膜来创造,以便于锂离子沿陶瓷相的传输。这些机理的理解将阐明a)锂离子和亲石阴离子之间的缔合和解离类型以及它们之间的竞争或协同作用;b)锂离子在不同本征界面上的真实解离和锂离子的传输,这将决定锂离子在具有不同本征界面的三元离子凝胶固体电解质中的有效传输路径和曲折;以及c)通过在陶瓷相上接枝的功能配体有效地固定阴离子来实现从双离子导电系统到单离子导电系统的转换。这些机理洞见将为通过设计有利的亲锂分子环境来调节和加速锂离子在不同界面和界面上的传输提供设计原则。这项研究具有潜在的变革性影响,可以提供关键的见解,并引导未来的研究工作朝着可扩展的生产高功率密度和高能量密度全固态电池的离子凝胶固体电解质和夹层方向发展。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beibei Jiang其他文献

Histological proven AI performance in the UKLS CT lung cancer screening study: Potential for workload reduction
英国肺癌筛查(UKLS)CT肺癌筛查研究中经组织学证实的人工智能性能:减少工作量的潜力
  • DOI:
    10.1016/j.ejca.2025.115324
  • 发表时间:
    2025-05-02
  • 期刊:
  • 影响因子:
    7.100
  • 作者:
    Harriet L. Lancaster;Beibei Jiang;Michael P.A. Davies;Jan Willem C. Gratama;Mario Silva;Jaeyoun Yi;Marjolein A. Heuvelmans;Geertruida H. de Bock;Anand Devaraj;John K. Field;Matthijs Oudkerk
  • 通讯作者:
    Matthijs Oudkerk
High-strength and energetic Alsub2/subTisub6/subZrsub2/subNbsub3/subTasub3/sub high entropy alloy containing a cuboidal BCC/B2 coherent microstructure
一种含有立方面心 BCC/B2 共格微观结构的高强高韧 Al₂TiZr₂Nb₃Ta₃ 高熵合金
  • DOI:
    10.1016/j.jallcom.2022.167546
  • 发表时间:
    2023-01-10
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Dongming Jin;Zhenhua Wang;Junhao Yuan;Beibei Jiang;Fengyun Yu;Jinfeng Li;Qing Wang
  • 通讯作者:
    Qing Wang
Polymer-templated functional organic-inorganic nanocomposites for lithium ion batteries, capacitors and ferroelectric devices
  • DOI:
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beibei Jiang
  • 通讯作者:
    Beibei Jiang
Mechanism of dihydroartemisinin in the treatment of ischaemia/reperfusion-induced acute kidney injury via network pharmacology, molecular dynamics simulation and experiments
基于网络药理学、分子动力学模拟和实验研究双氢青蒿素治疗缺血/再灌注诱导的急性肾损伤的作用机制
  • DOI:
    10.1016/j.intimp.2024.113705
  • 发表时间:
    2025-01-10
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Beibei Jiang;Jiahui Liu;Ziyi Qu;Yanqing Wang;Yuzhi Wang;Zhongtang Li;Xiaoming Jin;Yunlan Lao;Riming He;Shudong Yang
  • 通讯作者:
    Shudong Yang
Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy
氧含量对β型Ti-Mo合金变形模式及腐蚀行为的影响

Beibei Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

光电/土壤氯降解开关表面活性剂淋洗液中石油烃机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于大环单体的主链可降解开环易位聚合物的可控合成
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用数值 Green 函数求解开腔体正反散射问题的算法研究
  • 批准号:
    11626054
  • 批准年份:
    2016
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
细菌DNA复制解旋酶水解ATP和解开dsDNA的偶联机制研究
  • 批准号:
    31270783
  • 批准年份:
    2012
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
核酸高级结构生成与解开的动力学及其在动态条件下与蛋白质作用的研究
  • 批准号:
    20572082
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RUI: RESEARCH-PGR Meeting Future Food Demands: Phosphoproteomics to Unravel Signaling Pathways in Soybean's Response to Phosphate and Iron Deficiency
合作研究:RUI:RESEARCH-PGR 满足未来食品需求:磷酸蛋白质组学揭示大豆对磷酸盐和铁缺乏的反应的信号通路
  • 批准号:
    2329893
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: RESEARCH-PGR Meeting Future Food Demands: Phosphoproteomics to Unravel Signaling Pathways in Soybean's Response to Phosphate and Iron Deficiency
合作研究:RUI:RESEARCH-PGR 满足未来食品需求:磷酸蛋白质组学揭示大豆对磷酸盐和铁缺乏的反应的信号通路
  • 批准号:
    2329894
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Advanced fluorescence spectroscopy to unravel functional oligomerization of a newly discovered Ca2+ channel and its role in heart failure.
先进的荧光光谱揭示了新发现的 Ca2 通道的功能性寡聚及其在心力衰竭中的作用。
  • 批准号:
    2885854
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Studentship
CAREER: Leveraging soil viromics to unravel ecological patterns in complex communities
职业:利用土壤病毒组学揭示复杂群落的生态模式
  • 批准号:
    2236611
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Continuing Grant
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
  • 批准号:
    10646759
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
Active-site models unravel mechanism of enzymatic alkane activation
活性位点模型揭示了酶促烷烃活化的机制
  • 批准号:
    10711929
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
EXposomic Profiling in Airway disease to uNravel Determinants of disease in Asthma (EXPAND-Asthma) Center
气道疾病暴露组分析以解开哮喘疾病的决定因素 (EXPAND-Asthma) 中心
  • 批准号:
    10744673
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Phenotyping doublecortin+ cells to unravel human adult neurogenesis
双皮质素细胞表型分析揭示人类成人神经发生
  • 批准号:
    DP230101981
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Projects
Experimental and theoretical approaches to unravel the role of the cytoskeleton in driving the chirality of cells and multicellular tissues
揭示细胞骨架在驱动细胞和多细胞组织手性中的作用的实验和理论方法
  • 批准号:
    23H02455
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了