Stability and Regularity: From Analysis to Geometry
稳定性和规律性:从分析到几何
基本信息
- 批准号:2155054
- 负责人:
- 金额:$ 18.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on several problems at the crossroads of analysis and geometry that are united by a central theme: the use of functional and geometric inequalities as a tool to explore the geometry of a manifold or domain. These kinds of inequalities are used to describe ground states for physical systems, for instance, in acoustics and materials science; a classical example is the isoperimetric inequality, which mathematically describes why soap bubbles take a spherical shape. The project provides research training opportunities for graduate students. The results obtained as part of the project will be broadly disseminated to the scientific community.The project centers on stability and regularity estimates in different settings, including regularity of Riemannian manifolds with scalar curvature bounds and stability properties of their Laplace spectra; rectifiability results using the Alt-Caffarelli-Friedman monotonicity formula; and quantitative estimates for the Yamabe problem in conformal geometry. The research will bring together ideas from geometric analysis, partial differential equations and the calculus of variations, in terms of both techniques and applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的重点是几个问题的分析和几何的十字路口是统一的一个中心主题:使用功能和几何不等式作为工具,探索几何形状的流形或域。这类不等式用于描述物理系统的基态,例如在声学和材料科学中;一个经典的例子是等周不等式,它在数学上描述了为什么肥皂泡呈球形。该项目为研究生提供研究培训机会。作为该项目的一部分,所获得的结果将广泛传播给科学界。该项目集中于不同设置下的稳定性和正则性估计,包括具有标量曲率边界的黎曼流形的正则性及其拉普拉斯谱的稳定性;使用Alt-Caffarelli-Friedman单调性公式的可求正性结果;以及共形几何中Yamabe问题的定量估计。该研究将汇集来自几何分析、偏微分方程和变分法的技术和应用方面的想法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Neumayer其他文献
Minimality and stability properties in Sobolev and isoperimetric inequalities
索博列夫和等周不等式中的极小性和稳定性
- DOI:
10.15781/t26t0hc86 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Robin Neumayer - 通讯作者:
Robin Neumayer
Gradient stability for the Sobolev inequality: the case $p\geq 2$
Sobolev 不等式的梯度稳定性:$pgeq 2$ 的情况
- DOI:
10.4171/jems/837 - 发表时间:
2015 - 期刊:
- 影响因子:2.6
- 作者:
A. Figalli;Robin Neumayer - 通讯作者:
Robin Neumayer
Sharp quantitative Faber-Krahn inequalities and the Alt-Caffarelli-Friedman monotonicity formula
尖锐定量 Faber-Krahn 不等式和 Alt-Caffarelli-Friedman 单调性公式
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
M. Allen;D. Kriventsov;Robin Neumayer - 通讯作者:
Robin Neumayer
A note on strong-form stability for the Sobolev inequality
关于索博列夫不等式的强形式稳定性的注解
- DOI:
10.1007/s00526-019-1686-x - 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
Robin Neumayer - 通讯作者:
Robin Neumayer
dp–convergence and ?–regularity theorems for
entropy and scalar curvature lower bounds
dp–收敛性和 ?–正则定理
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Man;A. Naber;Robin Neumayer - 通讯作者:
Robin Neumayer
Robin Neumayer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Neumayer', 18)}}的其他基金
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Continuing Grant
Stability of Functional and Geometric Inequalities and Applications
函数和几何不等式的稳定性及其应用
- 批准号:
2200886 - 财政年份:2021
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
Stability of Functional and Geometric Inequalities and Applications
函数和几何不等式的稳定性及其应用
- 批准号:
1901427 - 财政年份:2019
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
- 批准号:
2239737 - 财政年份:2023
- 资助金额:
$ 18.8万 - 项目类别:
Continuing Grant
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
CAREER: Existence and Regularity of Solutions to Variational Problems in Geometric Analysis
职业:几何分析中变分问题解的存在性和规律性
- 批准号:
2147439 - 财政年份:2021
- 资助金额:
$ 18.8万 - 项目类别:
Continuing Grant
Gamma oscillation regularity quantification and dynamic analysis for epileptic lesion and network depiction.
癫痫病灶的伽玛振荡规律量化和动态分析及网络描绘。
- 批准号:
20K09356 - 财政年份:2020
- 资助金额:
$ 18.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Existence and Regularity of Solutions to Variational Problems in Geometric Analysis
职业:几何分析中变分问题解的存在性和规律性
- 批准号:
1750254 - 财政年份:2018
- 资助金额:
$ 18.8万 - 项目类别:
Continuing Grant
Mathematical analysis for concrete carbonation applying the regularity of a solution of quasi-linear parabolic equations
应用拟线性抛物型方程解的规律性对混凝土碳化进行数学分析
- 批准号:
16K17636 - 财政年份:2016
- 资助金额:
$ 18.8万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On regularity and uniqueness of solutions to partial differential equations in Fluid Mechanics and Harmonic Analysis
流体力学与调和分析中偏微分方程解的规律性和唯一性
- 批准号:
16K05228 - 财政年份:2016
- 资助金额:
$ 18.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the Navier-Stokes regularity problem
纳维-斯托克斯正则问题分析
- 批准号:
EP/M019438/1 - 财政年份:2015
- 资助金额:
$ 18.8万 - 项目类别:
Research Grant
Regularity of Evolutionary Problems via Harmonic Analysis and Operator Theory
通过调和分析和算子理论研究演化问题的规律性
- 批准号:
263969954 - 财政年份:2014
- 资助金额:
$ 18.8万 - 项目类别:
Research Grants
Stationarity and regularity in variational analysis with applications to optimization
变分分析中的平稳性和规律性及其在优化中的应用
- 批准号:
DP110102011 - 财政年份:2011
- 资助金额:
$ 18.8万 - 项目类别:
Discovery Projects