Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
基本信息
- 批准号:2205710
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Applications of fluid dynamics are ubiquitous in science and engineering, ranging from biology to geology, oceanography, and aerospace. This project focuses on a class of mathematical models commonly encountered in practical fluid dynamics applications: free-boundary problems. In such systems, fluid flow is modeled by the solution to a partial differential equation formulated in a domain whose boundary is dynamic and evolves according to couplings with the fluid fields. Free-boundary problems are among the most mathematically challenging in fluid dynamics and more generally in the analysis of partial differential equations due to their notorious complexity, severe nonlocality, and implicit nonlinearity. The broad objective of this project is to develop new methods to advance understanding of this class of models. The project aims to study the long-time existence, regularity, and behavior of generic solutions, as well as the stability of special solutions. The project will also provide opportunities for involvement of graduate students in the research.The project will study three models of different nature: the Muskat problem, water waves, and the free-boundary incompressible porous medium equation. Regarding the Muskat problem for fluids with constant density in porous media, the aims are to establish global existence and uniqueness and investigate long-time behavior of large solutions for the one-phase problem. Construction of special solutions and their stability will be another focus. For water waves, the project intends to rigorously demonstrate the instability of the classic two-dimensional Stokes waves for both two-dimensional and three-dimensional perturbations with and without surface tension effects. The free-boundary incompressible porous medium equation will be investigated regarding local well-posedness for a large class of density profiles and stability analysis for steady states. All three equations are quasilinear and are either degenerate parabolic or hyperbolic or mixed. A set of tools from harmonic analysis, microlocal analysis, potential theory, spectral theory, and bifurcation theory will be combined and sharpened to tackle these challenging questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体动力学在科学和工程中的应用无处不在,从生物学到地质学、海洋学和航空航天。本课题主要研究一类在实际流体力学应用中经常遇到的数学模型:自由边界问题。在这样的系统中,流体流动是由在一个区域中建立的偏微分方程解来模拟的,该区域的边界是动态的,并根据与流场的耦合而演变。自由边界问题由于其复杂性、严重的非局部性和隐含的非线性,在流体力学和偏微分方程组的分析中是最具数学挑战性的问题之一。这个项目的广泛目标是开发新的方法来促进对这类模型的理解。该项目旨在研究一般解的长期存在性、规律性和性态,以及特殊解的稳定性。该项目还将为研究生提供参与研究的机会。该项目将研究三种不同性质的模型:马斯卡特问题、水波和自由边界不可压缩多孔介质方程。对于多孔介质中具有恒定密度的流体的Muskat问题,目的是建立全局解的存在唯一性,并研究单相问题大解的长期行为。特殊解决方案的构建及其稳定性将是另一个重点。对于水波,该项目打算严格地证明经典的二维Stokes波在有和没有表面张力效应的情况下对二维和三维扰动的不稳定性。关于一大类密度分布的局部适定性和稳态的稳定性分析,将研究自由边界不可压缩多孔介质方程。这三个方程都是拟线性的,要么退化,要么是抛物线,要么是双曲型,要么是混合型。来自调和分析、微域分析、势能理论、频谱理论和分叉理论的一系列工具将被结合并磨砺以解决这些具有挑战性的问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huy Nguyen其他文献
Catalyst Design for Decarbonization Center
脱碳中心催化剂设计
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
P. Wasserscheid;J. Lercher;Varinia Bernales;A. V. Lilienfeld;Joachim Sauer;Susannah Scott;Victor Sussman;Hongcai Zhou;Laura Gagliardi UChicago;Joseph T. Hupp;N. Washton;John Anderson;K. Chapman;Juan de;Pablo UChicago;Omar Farha;Andrew L Ferguson;Rachel B. Getman;M. Neurock;Justin M. Notestein;Anna Wuttig;J. Siepmann;J. Vitillo;Zhihengyu Chen;Maia E Czaikowski;F. Fasulo;Hannah Fejzic;M. Ferrandon;Reggie Gomes;Soumi Haldar;Timur Islamoglu;David M. Kaphan;Maryam Mansoori;Kermani Umn;Daniel King;Xavier Krull;Špela Kunstelj;Chen;Jian Liu;Katherine E. McCullough;Abhishek Mitra;Huy Nguyen;Leon Otis;Andrew Ritchhart;Arup Sarkar;Julian Schmid;Gautam D. Stroscio;Jingyi Sui;Zoha H. Syed;Shreya Verma;Simon M. Vornholt;Wen Wang;Qining Wang;Haomiao Xie;Katherine E. McCullough;Saumil Chheda;Trent Graham;Ricardo A. Monter;Laura Gagliardi;M. Delferro;Jingyun Ye;D. Truhlar;M. R. Mian;Roshan Patel;Zihan Pengmei;Florencia A. Son;Timothy A. Goetjen;Alon Chapovetsky;Kira M. Fahy;Fanrui Sha;Xingjie Wang;S. Alayoglu - 通讯作者:
S. Alayoglu
『イーリアス』第11巻におけるネストールの物語
《伊利亚特》第十一卷中内斯特的故事
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Huy Nguyen;Rajib Shaw;Ichikawa Masahiro;池田証壽;上里賢一;吉野晃;西谷 大;佐野好則 - 通讯作者:
佐野好則
平成22年度科学研究費補助金「基盤研究B<海外学術調査>」による研究報告-研究課題:アメリカ収蔵「書跡」の基礎データ収集と整理のための調査研究
2010年度科研补助金“基础研究B<海外学术研究>”研究报告 - 研究课题:收集整理美国储存的“书法”基础数据的研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Huy Nguyen;Rajib Shaw;河内利治・安達直哉 - 通讯作者:
河内利治・安達直哉
Huy Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huy Nguyen', 18)}}的其他基金
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
- 批准号:
2311649 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Analysis of Incompressible Flows with Rigid and Free Boundaries
刚性和自由边界不可压缩流动分析
- 批准号:
2205734 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Analysis of Incompressible Flows with Rigid and Free Boundaries
刚性和自由边界不可压缩流动分析
- 批准号:
1907776 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
AF: Small: Collaborative Research: Dynamic Data Structures for Vectors and Graphs in Sublinear Memory
AF:小:协作研究:子线性存储器中向量和图的动态数据结构
- 批准号:
1909314 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
CAREER: Faster and Smaller Sketches for Bigger Data
职业:更快、更小的草图以获取更大的数据
- 批准号:
1750716 - 财政年份:2018
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
- 批准号:
23K13326 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stability Analysis of Power System with Massive Power Electronic Devices
含有大量电力电子器件的电力系统稳定性分析
- 批准号:
DP230100801 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Discovery Projects
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
- 批准号:
2205434 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Development of postural stability evaluation method based on working motion analysis using feature extraction
基于特征提取的工作运动分析的姿势稳定性评估方法的开发
- 批准号:
22K14451 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Functional analysis of the NuA4/TIP60 complex in epigenetic mechanisms linked to genome expression and stability
NuA4/TIP60 复合物在与基因组表达和稳定性相关的表观遗传机制中的功能分析
- 批准号:
462788 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Operating Grants
Multiscale Thermo-Hydro-Mechanical Analysis of Thawing/Freezing Cycles in Partially Saturated Soils: Application to Stability of Permafrost Layers and Climate Change
部分饱和土壤解冻/冻结循环的多尺度热水力机械分析:在多年冻土层稳定性和气候变化中的应用
- 批准号:
RGPIN-2020-06480 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Novel Aeroservoelastic Stability Analysis and Augmentation Framework: Application to Next-Generation Flexible Aerial Platforms
新型气动伺服弹性稳定性分析和增强框架:在下一代柔性空中平台中的应用
- 批准号:
RGPIN-2020-06318 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty Quantification for Probabilistic Stability Analysis and Uncertainty-Aware Control of Electric Power Systems
电力系统概率稳定性分析和不确定性感知控制的不确定性量化
- 批准号:
RGPIN-2022-03236 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
DMS-EPSRC: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
EP/V051121/1 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Research Grant