Data-informed Modeling for DNA and RNA Aptamer Design
DNA 和 RNA 适体设计的数据知情建模
基本信息
- 批准号:2155095
- 负责人:
- 金额:$ 33.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Petr Sulc of Arizona State University is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop new data-driven methods to design new RNA and DNA binders to molecular targets. Molecular interactions are at the basis of function of all living organisms, and their understanding is crucial for for diagnostic and therapeutics. Dr Sulc will develop machine learning models to analyze sequences of molecules that bind to a certain target molecule of interest (such as surface of a virus). The models extract particular structural or sequence motif in the molecule that is crucial for its function, which allows to computationally design even stronger binders. Dr Sulc’s group will train and validate the methods on both naturally occurring molecules as well as results from selection experiments against different targets (including viral surface proteins) with possible applications in diagnostics, therapeutics, as well as basic understanding of molecular interactions. Dr Sulc will further develop outreach programs that include public lectures and online activities aimed at high school students and general public to broaden participation in science and develop interdisciplinary skills that combine computer modeling, simulations and biochemistry experiments. This project will develop new machine-learning methods for processing of sequence ensembles from selection experiments. The experimental selection protocols (such as SELEX) serve to obtain DNA or RNA sequences that bind to a target of interest (e.g. protein, small molecule, or cells from a particular tissue ), where in each round a subset of the random sequence library that binds strongly to the target is amplified and kept for the next round of selection. Such methods produce large numbers of sequences, most of them only weakly binding to the target of interest, with few strongly binding candidates emerging at the end of the procedure. This project will develop novel models derived from Restricted Boltzmann Machine architectures and uses them both use as classifiers as well as generators of novel binders. Additionally, the models can be used to infer sequence and structural motifs in aptamers that are the key elements for strong affinity with the molecular target, making the models also interpretable. The models will be trained on naturally occurring non-coding RNAs, as well as multiple experimentally generated ensembles and the novel generated sequences will then be verified in experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
亚利桑那州州立大学的Petr Sulc获得了化学系化学理论、模型和计算方法项目的一项奖励,以开发新的数据驱动方法来设计新的RNA和DNA结合剂。分子相互作用是所有生物体功能的基础,对它们的理解对于诊断和治疗至关重要。Sulc博士将开发机器学习模型来分析与特定目标分子(如病毒表面)结合的分子序列。这些模型提取了分子中对其功能至关重要的特定结构或序列基序,从而可以通过计算设计出更强的结合剂。Sulc博士的团队将对天然存在的分子以及针对不同靶点(包括病毒表面蛋白)的选择实验结果进行培训和验证,这些方法可能应用于诊断,治疗以及对分子相互作用的基本理解。Sulc博士将进一步发展外展计划,包括面向高中生和公众的公开讲座和在线活动,以扩大对科学的参与,并发展结合联合收割机计算机建模,模拟和生物化学实验的跨学科技能。该项目将开发新的机器学习方法,用于处理来自选择实验的序列集合。实验选择方案(例如SELEX)用于获得结合感兴趣的靶标(例如蛋白质、小分子或来自特定组织的细胞)的DNA或RNA序列,其中在每轮中,扩增与靶标强烈结合的随机序列文库的子集并保留用于下一轮选择。这样的方法产生大量的序列,它们中的大多数仅与感兴趣的靶标弱结合,在程序结束时出现很少的强结合候选物。该项目将开发来自受限玻尔兹曼机架构的新模型,并将其用作分类器以及新绑定器的生成器。此外,该模型可用于推断适体中的序列和结构基序,这些序列和结构基序是与分子靶标具有强亲和力的关键元件,使得模型也可解释。该模型将在自然发生的非编码RNA以及多个实验生成的集合上进行训练,然后将在实验中验证新生成的序列。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petr Sulc其他文献
Coarse-Grained Simulations Of Dna And Rna Systems With Oxdna And Oxrna Models: Tutorial
使用 Oxdna 和 Oxrna 模型对 DNA 和 Rna 系统进行粗粒度模拟:教程
- DOI:
10.1109/wsc60868.2023.10407580 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Matthew L. Sample;Michael Matthies;Petr Sulc - 通讯作者:
Petr Sulc
RNA-induced allosteric coupling drives viral capsid assembly in the single-stranded RNA virus bacteriophage MS2
- DOI:
10.1016/j.bpj.2022.11.472 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Sean Hamilton;Tushar Modi;Petr Sulc;S. Banu Ozkan - 通讯作者:
S. Banu Ozkan
Petr Sulc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petr Sulc', 18)}}的其他基金
CAREER: Design and modeling for modular bionanotechnology and citizen science
职业:模块化生物纳米技术和公民科学的设计和建模
- 批准号:
2239518 - 财政年份:2023
- 资助金额:
$ 33.84万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Engineering DNA and RNA computation through simulation, sequence design, and experimental verification
合作研究:FET:中:通过模拟、序列设计和实验验证进行 DNA 和 RNA 计算
- 批准号:
2211794 - 财政年份:2022
- 资助金额:
$ 33.84万 - 项目类别:
Continuing Grant
Elements: Models and tools for on-line design and simulations for DNA and RNA nanotechnology
要素:DNA 和 RNA 纳米技术在线设计和模拟的模型和工具
- 批准号:
1931487 - 财政年份:2019
- 资助金额:
$ 33.84万 - 项目类别:
Standard Grant
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 33.84万 - 项目类别:
Continuing Grant
Deconvoluting the Ewing sarcoma genetic program using ancestry-informed human iPSC modeling
使用基于血统的人类 iPSC 模型对尤文肉瘤遗传程序进行解卷积
- 批准号:
10562800 - 财政年份:2023
- 资助金额:
$ 33.84万 - 项目类别:
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
- 批准号:
2243776 - 财政年份:2023
- 资助金额:
$ 33.84万 - 项目类别:
Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
- 批准号:
2243775 - 财政年份:2023
- 资助金额:
$ 33.84万 - 项目类别:
Standard Grant
GEO-CM: Prospecting for critical element deposits: an interdisciplinary approach using experimental geochemistry and field-informed modeling of sediment transport
GEO-CM:关键元素矿床勘探:利用实验地球化学和沉积物输运现场知情建模的跨学科方法
- 批准号:
2327940 - 财政年份:2023
- 资助金额:
$ 33.84万 - 项目类别:
Standard Grant
Collaborative Research: Chemistry-Informed Ice Nucleation and Growth--Integrated Laboratory and Modeling Studies
合作研究:基于化学的冰成核和生长——综合实验室和模型研究
- 批准号:
2322857 - 财政年份:2023
- 资助金额:
$ 33.84万 - 项目类别:
Standard Grant
Collaborative Research: Chemistry-Informed Ice Nucleation and Growth--Integrated Laboratory and Modeling Studies
合作研究:基于化学的冰成核和生长——综合实验室和模型研究
- 批准号:
2322856 - 财政年份:2023
- 资助金额:
$ 33.84万 - 项目类别:
Standard Grant
GEM: Explorative Global-To Kinetic-Scale Modeling of Collisionless Shocks Using Physics-Informed Data Mining and Machine Learning
GEM:使用物理信息数据挖掘和机器学习对无碰撞冲击进行探索性全局到动力学尺度建模
- 批准号:
2225463 - 财政年份:2022
- 资助金额:
$ 33.84万 - 项目类别:
Standard Grant
Impact of Post-COVID-19 Condition on the Canadian healthcare workforce: An agent-based modeling approach informed by living evidence syntheses to project long-term impacts on worker recovery and retention
COVID-19 后状况对加拿大医疗保健劳动力的影响:基于代理的建模方法,通过活体证据综合来预测对工人康复和保留的长期影响
- 批准号:
475223 - 财政年份:2022
- 资助金额:
$ 33.84万 - 项目类别:
Operating Grants
Predicting iron recovery after blood donation: comparing machine learning and biology-informed modeling approaches
预测献血后铁的恢复:比较机器学习和生物学建模方法
- 批准号:
475806 - 财政年份:2022
- 资助金额:
$ 33.84万 - 项目类别:
Studentship Programs