Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling

合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模

基本信息

  • 批准号:
    2243776
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Global floods and extreme rainfall events have surged by more than 50% this decade and are now occurring at a rate four times higher than in 1980. However, the capability of physical models in predicting flood events remains limited across spatial scales, especially in intensively managed agricultural systems like the Midwestern U.S. The apparent disparity between observed seasonal patterns of extreme precipitation and high streamflow events presents a challenge when using precipitation alone to predict flood occurrence and severity. This project addresses a fundamental question in hydrologic science: how do watershed characteristics and in-land management practices regulate the precipitation-runoff relationship across agriculture-dominated watersheds? The modeling framework in this project will integrate the complex impacts of watershed characteristics, human land use, and management practices into hydrological prediction. An early warning system will be developed for projecting flood occurrence at a granular level in a managed system and will be shared for further evaluation of the flood forecasting performance and uncertainty assessment.The overarching goal of the research is to develop a data-driven, physics-informed early warning system to predict flood occurrence and support communities in agriculture-dominated watersheds across the Midwestern United States. This project will develop a graph-based transformer deep learning approach integrated with process-based hydro-ecological modeling to improve flood prediction accuracy and keep the interpretable structure. The results of the project will be tested, shared, and deployed as a real-time prediction tool on a web-based platform that integrates mapping capabilities, advanced visualizations, and mobile access. The early warning system will be accessible to multiple users, especially underrepresented communities, concerning the direct impacts of flooding on life and property and the indirect effects on the food security, economy, and livelihood of the communities.This project is jointly funded by Hydrologic Sciences, the Established Program to Stimulate Competitive Research (EPSCoR), and the Directorate for Geosciences to support AI/ML advancement in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个十年来,全球洪水和极端降雨事件飙升了50%以上,现在以比1980年的速度高四倍。但是,在空间尺度上,物理模型预测洪水事件的能力在整个空间尺度上仍然有限,尤其是在诸如美国中西部之类的强度管理的农业体系中,在美国中西部遇到的季节性陷入困境时,在陷入困境的季节性陷入困境中,遇到了极端的陷入困境,而遇到了越来越高的陷入困境。该项目解决了水文科学中的一个基本问题:流域特征和国内管理实践如何规范以农业为主的流域之间的降水跑关系?该项目中的建模框架将将流域特征,人类土地使用和管理实践的复杂影响整合到水文预测中。将开发一个预警系统,用于在托管系统中将洪水预测在颗粒状水平上,并将共享以进一步评估洪水预测的绩效和不确定性评估。该研究的总体目标是开发数据驱动的物理,物理性的,具有的早期预测系统,以预测农业跨国公司的洪水范围的洪水和支持社区,跨国公司跨越了跨米德尔氏派对跨米德尔氏派。该项目将开发一种基于图的变压器深度学习方法,该方法与基于过程的水力生态模型集成在一起,以提高洪水预测的准确性并保持可解释的结构。该项目的结果将在基于Web的平台上作为实时预测工具进行测试,共享和部署,该平台集成了映射功能,高级可视化和移动访问。 The early warning system will be accessible to multiple users, especially underrepresented communities, concerning the direct impacts of flooding on life and property and the indirect effects on the food security, economy, and livelihood of the communities.This project is jointly funded by Hydrologic Sc​​iences, the Established Program to Stimulate Competitive Research (EPSCoR), and the Directorate for Geosciences to support AI/ML advancement in the地球科学。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准的评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ibrahim Demir其他文献

Modeling leaching behavior of solidified wastes using back-propagation neural networks
  • DOI:
    10.1016/j.ecoenv.2007.10.019
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Senem Bayar;Ibrahim Demir;Guleda Onkal Engin
  • 通讯作者:
    Guleda Onkal Engin
Measuring the Efficiency of Secondary Schools in Different Regions in Turkey Using Data Envelopment Analysis
使用数据包络分析衡量土耳其不同地区中学的效率
Integrating Generative AI in Hackathons: Opportunities, Challenges, and Educational Implications
将生成式人工智能融入黑客马拉松:机遇、挑战和教育意义
  • DOI:
    10.48550/arxiv.2401.17434
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramteja Sajja;Carlos Erazo Ramirez;Zhou‐Bo Li;B. Demiray;Y. Sermet;Ibrahim Demir
  • 通讯作者:
    Ibrahim Demir
An Immersive Hydroinformatics Framework with Extended Reality for Enhanced Visualization and Simulation of Hydrologic Data
具有扩展现实功能的沉浸式水文信息学框架,用于增强水文数据的可视化和模拟
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Uditha Herath Mudiyanselage;Eveline Landes Gonzalez;Y. Sermet;Ibrahim Demir
  • 通讯作者:
    Ibrahim Demir
Coping with Information Extraction from In-Situ Data Acquired in Natural Streams
处理从自然流中获取的原位数据中提取信息
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Özlem Baydaroğlu;M. Muste;B. Cikmaz;Kyeongdong Kim;E. Meselhe;Ibrahim Demir
  • 通讯作者:
    Ibrahim Demir

Ibrahim Demir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ibrahim Demir', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
  • 批准号:
    2320980
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: River Morphology Data and Analysis Tools (RiverMorph): A Web Platform for Enabling River Morphology Research
合作研究:河流形态数据和分析工具(RiverMorph):实现河流形态研究的网络平台
  • 批准号:
    1948944
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Framework: Software: Collaborative Research: CyberWater: An open and sustainable framework for diverse data and model integration with provenance and access to HPC
框架:软件:协作研究:Cyber​​Water:一个开放且可持续的框架,用于集成各种数据和模型,并提供 HPC 的来源和访问权限
  • 批准号:
    1835338
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: An Integrated Big Data Framework for Water Quality Issues in the Upper Mississippi River Basin
辐条:媒介:中西部:协作:密西西比河流域上游水质问题的综合大数据框架
  • 批准号:
    1761887
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于人—信息—物理系统的双臂协作机器人安全交互方法研究
  • 批准号:
    52375031
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向物理人机交互的机器人主动安全协作控制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
    52205528
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向物理人机交互的机器人主动安全协作控制方法研究
  • 批准号:
    62203186
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336368
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336367
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了