Nonlinear Partial Differential Equations Methods in the Study of Interfaces
界面研究中的非线性偏微分方程方法
基本信息
- 批准号:2155156
- 负责人:
- 金额:$ 19.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates partial differential equations (PDE) that arise in several areas of pure and applied mathematics. One of the main objectives is the formal derivation of physical models, whose mathematical description is based on PDE of nonlocal type, that describe the dynamics of defect lines in crystalline materials. In a different area, the PI will investigate the qualitative behavior of solutions to nonlinear elliptic PDE that model segregation phenomena. The project will fundamentally contribute to these fields by bridging the gap between mathematical analysis and physics and will enable further mathematical understanding of physical phenomena. The project provides research training opportunities for graduate students and postdoctoral researchers.At a technical level, the objective of this project is the study of forming interface surfaces through PDE methods. Thematic areas of focus are: (i) Nonlocal reaction-diffusion equations, where the main goals are to derive mesoscale and macroscopic scale models describing the dynamics of defect lines in crystals (dislocations) through the study of the asymptotic limits of Peierls-Nabarro models and to prove existence of heteroclinic and multibump orbits for systems of equations driven by fractional operators; and (ii) Segregation models and nonlinear eigenvalue problems. Here, the main objective is the analysis of nodal sets of segregated stationary configurations and their connection with eigenvalue problems for fully nonlinear operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目研究了在纯数学和应用数学的几个领域中出现的偏微分方程(PDE)。的主要目标之一是正式推导的物理模型,其数学描述是基于偏微分方程的非本地类型,描述晶体材料中的缺陷线的动态。在另一个领域,PI将研究非线性椭圆偏微分方程模型分离现象的解的定性行为。该项目将通过弥合数学分析和物理之间的差距,从根本上促进这些领域,并将使物理现象的进一步数学理解。该项目为研究生和博士后研究人员提供研究培训机会。在技术层面上,该项目的目标是通过PDE方法形成界面表面的研究。重点专题领域是:㈠非局部反应扩散方程,其主要目标是通过研究Peierls-Nabarro模型的渐近极限,推导出描述晶体中缺陷线(位错)动态的中尺度和宏观尺度模型,并证明分数算子驱动的方程系统的异宿轨道和多凸轨道的存在; ㈡分离模型和非线性本征值问题。在这里,主要目标是分析分离的固定配置的节点集及其与完全非线性算子的特征值问题的联系。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefania Patrizi其他文献
The Discrete Dislocation Dynamics of Multiple Dislocation Loops
- DOI:
10.1007/s00205-025-02108-w - 发表时间:
2025-05-20 - 期刊:
- 影响因子:2.400
- 作者:
Stefania Patrizi;Mary Vaughan - 通讯作者:
Mary Vaughan
Stefania Patrizi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefania Patrizi', 18)}}的其他基金
Regularity Theory for Elliptic Equations and Free Boundaries
椭圆方程和自由边界的正则理论
- 批准号:
1565186 - 财政年份:2016
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
- 批准号:
RGPIN-2017-04313 - 财政年份:2022
- 资助金额:
$ 19.13万 - 项目类别:
Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant